Waste to Energy - Nashik, India
(Co-Fermentation of Fecal Sludge and Organic Waste)

A Project under the International Climate Initiative (IKI) of BMUB

Jitendra M Yadav
Technical Expert
Sustainable Urban Habitat
GIZ - India
The International Climate Initiative (IKI) of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) has been financing climate and biodiversity projects in developing and newly industrialising countries since 2008.

The IKI is a key element of Germany’s climate financing and the funding commitments in the framework of the Convention on Biological Diversity.

The Initiative places clear emphasis on
- climate change mitigation,
- adaption to the impacts of climate change and the
- protection of biological diversity.

The IKI efforts provide various co-benefits, particularly the improvement of living conditions in partner countries.
Waste to Energy, Nashik: A Pilot Approach

The concept involves co-fermentation of the organic municipal solid waste and fecal sludge

Advantages

- Combined treatment of **two waste streams** (liquid & solid).
- Elaborated business model improves **economic feasibility**.
- Reuse & recover supports the **closure of material loops**.
- Anaerobic digestion ensures **scientific treatment** of fecal sludge.
- Contribution to **climate protection** goals.
- **Approach** for rapidly growing cities.
Waste to energy: Plant Dimensions

Input material
- Food waste: 10 to 15 metric tons per day (from 1350 Hotels)
- Blackwater: 10 to 20 m³ per day (from 200 community toilets)

Volumes
- Digester: 1300 m³ including storage capacity (retention time is 35 days)
- Biogas-generation: approx. 2,100 m³/ per day

Combined Heat and Power Unit (CHP)
- 60 kW (24 hours per day) for anaerobic digester-plant
- 200 kW (15 hours per day) for external use (around 3,000 kWh per day)
Waste to Energy: Steps for Implementation

- **Pre-feasibility study** * - Site selection
- Feasibility study - **Project design** (incl. baseline creation through focused studies/assessments)
- Detailed Project Report (DPR) preparation
 - Operational model
 - Business model
- **Process negotiation with the partner and political clearances**
- Tendering process
- **Construction (current status)**
- Commissioning
- Monitoring

Bold letters refer to time intensive processes
Identification of partner city: Three cities selected for study (Delhi, Raipur, Nashik)

Nashik – Key-criteria for selection:
- Secured waste sources
- Well regulated collection system for organic waste from hotels
- Provisions for utilization of the produced energy into the state power grid
- HR capacities of Nashik good
- Market for products – manure
- Availability of compost plant
- Land availability

Nashik
Area: 259 Sq. Km,
Population: 1.48 million (2011)
1.65 million (current)
Feasibility Study (2011)

Operational viability:
- Possibilities for combining liquid and solid waste flows, nutrient, heat and energy recovery
- Secured input of substrate is available throughout the year

Economic viability:
- Readiness of ULB for paying tipping fees to the operator
- Electricity charges in Maharashtra: Rs. 5 per unit (feed in tariff)
- Byelaw to regulate collection of kitchen waste from hotels
- Already existing market for manure
Supportive studies and baseline assessment

- **Study on balance of input and output at different admixtures**
 - Admixture of organic waste to fecal sludge at 1:1.5 and 1:2 ratios gives better biogas production as compared to other ratios.

- **Study for characterization and quantification of organic solid waste generated in commercial establishments**

- **Wastewater study from selected Community Toilet Complexes (CTC) in Nashik:**
 - To assess the hydraulic load of the septic tanks inflow to ensure that sufficient quantity of fecal sludge is available throughout the year.
DPR prepared by an Indian consultant with detailed design, technical specification, O&M Plan, business model, EHS plan.

Project Financials:

Capital Costs
Investment: approx. 1 Million Euro
- Grant will be provided by BMUB through GIZ
- Additional investment (if any) from contractor (as per tender)

Operation and maintenance cost factors
- Collection and transportation
- Maintenance of the plant, staff

Expected Revenue from
- Manure – Rs. 3000 per ton
- Monthly O & M service fee for collection and treatment
- Feed in tariff for excess electricity (INR 5 per unit (6.2 Euro cent))
Tender Process: Qualification criteria

<table>
<thead>
<tr>
<th>Tender Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-bid: Company provides securities as per NMC norms</td>
</tr>
<tr>
<td>Financial Bid: Bidder is selected based on lowest service fee and highest guaranteed electricity generation (subject to minimum 1150 kwh/d); whatever is the best deal for Nashik</td>
</tr>
<tr>
<td>Technical Bid: Technical know-how, understanding of the concept, experience in implementation and O&M, experienced staff, financial capabilities</td>
</tr>
</tbody>
</table>

Sustainable operation of the plant ensured through a provision, stating that services should be *“one – stop – solution”* *(collection, transportation, processing, marketing and disposal in one hand).*
The Tender results
(as proposed by the most competitive bidder)

- **500.000 INR/ month (6250 Euro) service fee** for collection, transportation and treatment of organic solid waste and fecal sludge as per tender requirements

- **Guaranteed electrical energy supply of 3300 kWh/day** to Nashik (as against minimum requirement of 1150 kWh/ day) worse 5 INR/ kWh (appr. 500.000 INR/ month (6250 Euro))

- **The gross gain** from this contract for Nashik is **savings in transport** of at least 450 tons per month of MSW and 300-600 tons of fecal sludge / month depending on actual quantities and avoided costs for processing of MSW

- Bidder gets **service fee** as well as **feed in tariff** for excess electricity and can sell manure
Learnings, opportunities and challenges ahead
The way forward...

- Nashik as location for the pilot was the **right decision** (tipping fees already known, SWM facility, byelaws etc)
- Handholding of operator and Nashik during construction, commissioning and first operation as well as time and cost management
- **Capacity building concept** (for both operator and NMC)
- Monitoring (GHG emissions, technical and cost performance)
- Business model seems to be robust but absolute revenue small due to the pilot character of the plant; *bidder interested in technology approach*
- Integration of learnings into **urban sanitation strategies** for India
Safe costs by

Thank You......