Effect of System-Scale on Multi-Objective Sanitation Planning

Laura Kohler

University of Colorado Boulder
USA
Universal Sanitation

Sanitation Solution Continuum

Centralized

Decentralized

Onsite
Use

<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>10%</td>
</tr>
<tr>
<td>East Asia & Pacific</td>
<td>50%</td>
</tr>
<tr>
<td>Latin America & Caribbean</td>
<td>31%</td>
</tr>
<tr>
<td>North America</td>
<td>25%</td>
</tr>
</tbody>
</table>

1 Banerjee, Sudeshna and Morella 2011
2 United Nations 2004
3 World Bank & Australian Aid 2013
4 EPA 2002
Objective

Improve understanding of the factors affecting the performance of onsite sanitation solutions (OWTS) to:

i. Improve reliability of *existing* systems

ii. Guide decisions about *future* OWTS implementation
Systemic Components of OWTS Performance

- OWTS Technology
Systemic Components of OWTS Performance

- OWTS Technology
- OWTS User Interface
Systemic Components of OWTS Performance

Model Approach

Independent:
Technology & User Interface

Dependent:
Estimated financial consequence

Data:
Local documented data
Data Characteristics

Boulder County, CO

- **14,300** OWTS
- **4,700** OWTS are NOT permitted
- **215** repair permits applications indicating that they “Found out the system failed”
- Similar to the total population, ~**30%** of the sample systems are NOT permitted
Dependent Variable Identification

Repair Severity

• No. of Repairs
 • Repair Types
 – Minor
 – Moderate
 – Major
• Financial consequence of poor performance
Independent Variable Categories

Physical State
Organization
User Motivation
Knowledge
Economic
Other
Multinomial Logistic Regression

Model Skill:
RPSS specifies the extent by which, relative to constant climatology forecasts, the actual predictions are successful in discerning among different outcomes

- Models choices
- Response variable is categorically distributed

Model Skill:
RPSS specifies the extent by which, relative to constant climatology forecasts, the actual predictions are successful in discerning among different outcomes
Significant Predictors of OWTS Performance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Age</td>
<td>TECH</td>
<td>+</td>
</tr>
<tr>
<td>Regulated Inspection (Property Transfers)</td>
<td>ORG</td>
<td>−</td>
</tr>
<tr>
<td>Sales</td>
<td>UM/KNOW</td>
<td>+</td>
</tr>
<tr>
<td>Other Documented Inspections (Loan)</td>
<td>ORG</td>
<td>−</td>
</tr>
<tr>
<td>Water Supply</td>
<td>UM/OTHER</td>
<td>.</td>
</tr>
<tr>
<td>Structural Value/Living Area</td>
<td>ECON/TECH</td>
<td>.</td>
</tr>
</tbody>
</table>
Expected Risk (thousands of dollars)

Observed Risk

Estimated Risk

Properties requesting OWTS repair permits with failed systems

- Category 1: Less than $13,000
- Category 2: Between $13,000 and $17,000
- Category 3: Greater than $17,000
Conclusions

• Importance of mandatory inspections
• Education campaigns at the point of sale
• Set standards for post-purchase operations into regulations

Future Research

• Hierarchical modeling
• Extreme values
• Improving severity index
• Linking economic to environmental and health consequence
Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 2012139999

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.