A Serious Game for Collaborative Sanitation Planning

Dr. Jennifer McConville
Prof. Charles Niwagaba
Prof. Jaan-Henrik Kain
Prof. Monica Billger
SPANS project - Sanitation Planning for Alternative Nutrient-recovery Systems

The project is exploring how new technologies and ways of planning can improve the recovery and reuse of important fertilizing nutrients from wastewater/faecal sludge

Objectives

- Investigate the technical and market readiness of nutrient-recovery technologies,
- Study the readiness of society to accept alternative systems,
- Evaluate alternative planning techniques for promoting innovation.
Why Games?

Research has shown serious games to be effective for:

Motivating learning
- Visualization enhances understanding of complexity situations
- Fun = increased learning

Problem-solving
- Improves decision-making and analytical skills
- Stimulates creativity

Increasing engagement & participation
- Creates trust and partnerships
- Develops the ability to function cooperatively

Collective learning
- Understanding other perspectives
- Understanding stakeholder roles & responsibilities
- Reflecting together
The game aims to share knowledge about nutrient resource recovery from sanitation and supports attitude-change and collaboration between players.

Other aims of the game:
- Increase understanding of the need for sanitation
- Increase understanding of other stakeholder perspectives
- Increase collaboration between actors
- Inform about new technologies
- Having fun - be engaging
Concepts included in the game

- **Potential benefits** of safe reuse
 - Fertilizers
 - Link to food production
- **Potential negative consequences:**
 - Water pollution
 - Disease
- **Different roles** within sanitation chain
 - Housing
 - Treatment
 - Farming
 - Private Contractor
- **Unexpected event cards**
 - Negative – e.g. floods, disease
 - Positive – e.g. innovations, development
Target audience

Politicians and professionals in decision-making positions

Other possible users of the game:
- Students
- Professionals involved in sanitation planning
- Citizens (private entrepreneurs, landlords, home owners, community groups, farmers)
Context

Players work together to manage the sanitation situation in a growing city.

- Each round the city grows
- Improper management leads to a collective loss!
- Follow your personal agenda
Personal Agendas

Environment – e.g. keep the water clean

Economy – e.g. avoid expensive imports

Happiness – e.g. clean housing areas

Public Good – e.g. keep people healthy
Earn Points for built Infrastructure
RECLAIM Game

Board
- Urban areas
- Rural areas
- Water
- Unusable land (e.g. swamp)

Resource Dice
- Food
- Waste
- Sorted Waste
- Sludge
- Fertilizer
- Disease outbreak
Infrastructure

Housing blocks
- Unconnected
- Improved
- "Safe collection"

Transportation
- Roads
- Pipes

Treatment
- Existing system
- Improved
- Resource recovery

Farms
- Simple
- Improved (2x food)

50% risk of failure!
Limits

Max 4 of same resource per hexagon!

4 Houses per Hexagon

Each House needs 1 Food → 1 Waste

2 Treatment plants per hexagon

Treats 4 Waste

Treat 2 Waste

1 Farm per hexagon

Converts 2 NKP → 2 Food

Converts 4 NKP → 4 Food
Event cards – every 10 min

INNOVATION: HOUSING

Upgrade a Housing Block for free. Housing role chooses which one.

Don't draw any card.
Tutorial
Gameplay

Order of play:
Housing → Treatment → Farming → Independent Contractor

I Each player’s turn:
 1. 3 build actions
 2. Fetch resources
 3. Convert resources
 4. Send resources

II: Political decisions – all players together

Game consists of 4 rounds – roles rotate each round
Housing role starts

- Builds **houses** & transportation
- Converts **food** to waste
Treatment Role

- Builds **treatment plants** & transportation

- Converts **waste** to sludge or NPK
The old treatment plant only has half capacity: throw the dice for each waste and see if it turns into sludge or will be dumped in the water.
Farming Role

- Builds farms & transportation

- Converts NPK or sludge to food

50% risk for disease!
Private Contractor Role

Can choose to act as any of the other roles

However, everything is built to a higher cost
Political decisions

<table>
<thead>
<tr>
<th>Vaccinate</th>
<th>Import Food</th>
<th>Import NPK</th>
<th>Dump Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 €</td>
<td>200 €</td>
<td>100 € FREE</td>
<td>100 €</td>
</tr>
<tr>
<td>400 €</td>
<td>300 €</td>
<td>200 €</td>
<td>100 €</td>
</tr>
</tbody>
</table>
Watch your progress on sanitation provision!

BASIC SANITATION COVERAGE

- **60 000** | Current Population
- **30 000** | Number of people covered
- **30 000** | Number of people remaining

SANITATION LEVELS

- **25%** | Safely managed sanitation
- **25%** | Basic sanitation
- **25%** | Limited sanitation
- **25%** | Unimproved sanitation
End of Game

All players have **lost**, if at the end of a round:
- River is fully polluted
- More than 4 disease dice on the board
- Not enough food

If the players have not lost, then the player with the most points at the end of Round 4 **Wins!**
Let’s play!
Counting Points

Points for Infrastructure

Points for Hidden Agendas
Post-discussion

Presentation of overall results *(Excel model)*

- How do you think that you performed?
- Do you wish you had played differently? In what way?
- In what ways does this game reflect reality?
- Can you apply lessons from this game in your own work?

(Present the Reuse-Compilation)

- What else is missing to improve the sanitation situation in your town?
- What more knowledge is needed to improve the sanitation situation in your town?
- What can you start working with now?
SPANS TEAM

Charles Niwagaba
Makerere University
Uganda

Jennifer McConville
Swedish University of Agricultural Sciences

Elisabeth Kvarnström
Research Institutes of Sweden

Monica Billger
Chalmers University of Technology

Jaan-Henrik Kain
Chalmers University of Technology

Annika Nordin
Swedish University of Agricultural Sciences