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1 INTRODUCTION

1.1 Background
Granular activated carbon (GAC) is a porous filter medium, that has been used in drinking

water treatment for decades. Its large surface area adsorbs small compounds from water and

provides sheltered conditions for the biological degradation of several different organic

compounds (Wilcox et al. 1983). Frequent regeneration of GAC is necessary if effective

adsorption is to be maintained. 

Helsinki Water started to study GAC filtration with its present raw water in 1993 by

launching a pilot-scale study, in which anthracite and GAC were compared as filter media. In

the following year, the author published a literature survey, in which the pilot study was

reported and the experiences from major cities using GAC in Finland were summarized

(Vahala 1994).

The driving force for the interest in GAC was the deterioration of water quality in the

distribution system, especially in Helsinki city centre, where the usage rate of water had

decreased. The deterioration of water quality was seen as an increased biofilm formation and

harmful deposits resulting in the increased replacement rate of water meters. The other

driving force was the European drinking water legislation. When Finland joined the European

Union in 1994, a target level of 2.0 mg/l total organic carbon (TOC) was introduced in the

Finnish Drinking Water Degree. At that time, the TOC in the finished water was around 2.8

mg/l.

Helsinki Water has two treatment plants, the Pitkäkoski and Vanhakaupunki Water Treatment

Plants (WTP), each of almost similar size and process configurations. Their raw water is

supplied from Lake Päijänne. During the study, both plants consisted of chemical coagulation

with aluminium sulphate, sedimentation, sand-filtration, ozonation and chloramination. Lime

and carbon dioxide were used for pH control in three different phases.

Soon after the author’s literature survey, the general layout plan of the GAC plant was

finalized by the consultant (Ala-Peijari et al. 1994). The plan proposed introducing two-step

GAC filtration and ultraviolet (UV) disinfection between ozonation and chloramination. The

layout plan provided a framework for the pilot-scale studies at Pitkäkoski WTP (1995-1998)
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which are described in this thesis and in Annexes I-VIII. The results of this study were used

in the process design of the full-scale treatment plants.

The two-step GAC process was selected to combine biological and adsorptive filtration in

two sequential steps. The first filter would contain saturated GAC and was expected to

eliminate the biodegradable compounds, while the fresh GAC in the second step adsorbs part

of the non-biodegradable compounds. When saturated GAC is replaced with fresh GAC in

the first filter, the flow is redirected so that it goes through the fresh GAC last. Thus the first

filter always contains microbe-colonized GAC, and the carbon usage rate should be lower

with a longer service life than can be expected with single-stage contactors.

In January 1998, Vanhakaupunki WTP launched two-step GAC filtration, which was

followed by the world’s biggest UV disinfection unit at that time. Three parallel online low-

pressure UV units with a minimum UV dose of 25 J/m2 were installed to eliminate the

bacteria released from the GAC filters. The major changes in the final design compared to the

general layout plan were that the first GAC filter was an upflow filter (instead of downflow)

and that the bed depth of the single filter was 2.8 m (instead of 2.0 m). Later in December

1998, Pitkäkoski WTP was launched with a similar process modification. In the same year,

the backwashing of GAC filters was studied in Vanhakaupunki WTP’s full-scale GAC filters

(IX).

1.2 Objectives
The aims of the study were as follows:

1. To assess the performance of two-step GAC filtration in natural organic matter

(NOM) removal in cold, low alkalinity lake water, which was pre-treated with

chemical coagulation, sedimentation, sand filtration and ozonation.

2. To evaluate the optimal operation conditions of the process scheme at Helsinki

Water’s treatment plants after installing two-step GAC filtration and UV

disinfection.

3. To determine the effects of two-step GAC filtration on the water quality in the

distribution system.

The results of each part are discussed in different Chapters (3-5) of this thesis. Chapter 6

discusses some different approaches in the development of Helsinki Water’s treatment

processes.
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1.3 Scope and other supporting studies
The selection of the process scheme and operational parameters in the pilot plant study was

based on the general layout plan of the full-scale plants. Owing to different process

configuration (flow direction, bed depth, GAC type) in full-scale application, the results from

the pilot-study are not directly applicable to the full-scale.

Since UV irradiation does not significantly alter the amount or composition of biodegradable

NOM in the conditions normally applied in water treatment (Shaw et al. 2000), the UV

disinfection had a limited role in the research framework.

Backwashing studies in the pilot-scale filter columns are difficult to interpret into full-scale.

In order to obtain more reliable strategy for backwashing of GAC filters, the backwashing

research was prolonged until the full-scale application was available. Annex IX describes the

most interesting and unexpected results in the tests performed under author’s instruction. A

more detailed description of the study can be found elsewhere (Mikola 1999).

During the study, Helsinki Water tested several GAC types for NOM adsorption in small

pilot filters (diameter 50 mm). The importance of GAC type selection for NOM adsorption is

demonstrated by a selection of breakthrough curves from this test (Figure 2). The choice of

GAC type (Filtrasorb F400) for the pilot study and full-scale application was based on these

tests, but owing to commercial confidentiality the full report with manufacturer details has

not been published. The full-scale filters were filled with a slightly modified Filtrasorb

SF400. 

Enhanced coagulation was studied using jar tests and pilot-studies under the author’s

instruction and are reported elsewhere (Pyrhönen 1997). The study compared different

coagulants and coagulation conditions for optimum NOM removal at Pitkäkoski WTP. This

thesis refers to some of the most important conclusions.

Parallel to this study, the Finnish Environment Institute carried out a microbiological study

by taking water and biofilm samples at different treatment steps at the WTP and in the

distribution system. The aim of the study was mainly to develop new microbiological

methods, but also to assess the existence of potentially harmful microorganisms in the GAC

filter bed and distribution system. The results are reported elsewhere and are not discussed

here (Niemi et al. 1996, 1998; Niemi and Heiskanen 1997; Heikkilä 1999).
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2 MATERIALS AND METHODS

2.1 Outline of experimental design 
The study consisted of several pilot-scale runs at Pitkäkoski WTP (I-VIII) and a full-scale

study at Vanhakaupunki WTP (IX). The rapid small-scale column tests (RSCCT) were not

performed, because the short empty bed contact time (EBCT) and duration in the RSCCT

complicate the prediction of the role of biodegradation in GAC filters (Summers et al. 1992;

DiGiano et al. 1998).

In the beginning of the study Helsinki Water already had a pilot-scale WTP, that was able to

simulate the existing treatment process in two parallel treatment trains (~ 0.2 m3/h each). This

pilot WTP was later updated to reflect the new process combination with two-step GAC

filtration and UV disinfection. The study described in Annexes VII and VIII utilized the

updated pilot WTP. This thesis not only summarizes the published studies, but also briefly

describes some of the most interesting unpublished results obtained from the pilot WTP.

In order to obtain comparable results from different operational conditions, a pilot GAC plant

was constructed in the beginning of this study. Most of the results in this thesis were obtained

from four parallel pilot-scale filter pairs (diameter 200 mm), which were supplied from the

full-scale process either before or after ozonation (I-VI). As discussed before, the pilot GAC

plant was constructed to reflect the general layout plan of the full-scale GAC plant. All of the

filter pairs were operated in downflow mode with a bed depth of 1.7-2.0 m. A pilot-scale

ozonator was used to assess the effect of ozone on the GAC performance (I, V)

The first phase of the pilot test (29.5.1995- 12.3.1996) compared the effect of EBCT, ozone

dose and GAC age on the filter performance (I, II, V, VI). In the second phase (15.4-

10.9.1996), the non-ozonated train was subjected to a variation in ozone doses (I, V). In one

train, Picabiol “biological” activated carbon was tested (V). Two trains were operated

continuously for 473 days (I, II). The third phase (18.10.1996-29.1.1997) tested the effect of

nutrient addition (IV; Moramarco 1997) and advanced oxidation techniques (Bicelli 1997) for

103 days.

The water quality changes of GAC filtered water in the distribution system were tested by

supplying water from one train to the pilot water main after UV disinfection, pH control and

chloramination. The reference water main was supplied with the effluent from the full-scale

treatment process. Annex III gives a detailed description of the study.
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The full-scale backwashing study was conducted at Vanhakaupunki WTP. The effects of

operational parameters on the quality of the filter effluent were studied in a filter pair with

fairly fresh GAC (IX).

2.2 Water source and quality
The raw water was taken from Lake Päijänne, which has typically low alkalinity and a

moderate concentration of NOM. Although the specific UV absorbance was below 4.0, it was

amenable to coagulation. During the study, chemical coagulation with aluminium sulphate at

Pitkäkoski WTP removed some 50 % of the raw water TOC (Table 1). The raw water quality

was subjected to minor seasonal changes.

Table 1. The average (min-max) water quality characteristics in the raw water and pilot GAC

plant influent.

Raw water Sand-filtered Ozonated

Temperature oC 6.3 (1-14) 8.7 (4.3-14.1) 7.5 (3.8-13.7)

pH 7.1 7.3 (7.1-7.5) 7.1 (6.5-7.6)

Alkalinity mg CaCO3 26 54 (34-70) 52 (28-69)

UVA254 1/m 15.2 5.0 (4.3-6.2) 2.6 (2.1-3.7)

TOC mg/l 5.7 (5.5-6.1) 2.8 (2.6-2.9) 2.7 (2.5-2.8)

Oxidizability O2 mg/l 5.1 (4.8-5.8) 1.7 (1.6-1.9) 1.5 (1.4-1.6)

Turbidity FTU 0.18 0.06 (0.04-0.09) 0.05 (0.03-0.10)

Bromide �g/l < 20* n.a. n.a.
* Nissinen et al. (2002); n.a.= not analyzed

2.3 Analyses
UV absorbance (UVA254) was measured at 254 nm with a Perkin-Elmer Lambda UV/VIS

spectrophotometer using 1-cm quartz cells and distilled water as a reference, except in VII

and VIII, where a Dr. Lange Cadas 100 UV/VIS spectrophotometer was used, and in IX

where a Shimatsu UV-1601 spectrophotometer was used. The TOC analyses were performed

in duplicate with an Astro 2001 TOC analyzer  incorporating wet-oxidation catalyzed by UV

light (precision ±0.1 mg/l). The total suspended solids (TSS) was determined using GF-C

glass fiber filters and the optical particle counting was performed with a Pamas SVSS

Analyser, in which the size of the particle was measured according to the area of its shadow

(IX).
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Chlorine demand samples were collected in 1 000-ml brown glass bottles and buffered to pH

7.0 with a phosphate buffer (II). The samples were then dosed at a 2:1 Cl2:TOC ratio with

sodium hypochlorite and stored in the dark at room temperature. These samples were

analyzed for residual chlorine by the iodometric method (Standard Methods 1985) following

the 4 h, 1 d, 2 d, 3 d, 7 d and 9 d incubation period.

In the simulated distribution system (SDS) tests (II), samples were collected to determine the

disinfection by-product (DBP) levels formed under potential chlorination conditions.

Therefore, the pH of the sample was adjusted to 8.4 using a phosphate buffer, 0.6 mg/l of

sodium hypochlorite was added and after half an hour of contact time, 0.2 mg/l ammonia was

added to produce chloramines. After seven days’ incubation period in the dark at room

temperature, the samples were dechlorinated with tiosulphate and were then analyzed for

adsorbable organic halogens (AOX) and trihalomethanes (THM). The THM were determined

according to ISO/DIS 10301 with minor modifications, such as smaller sample volume (5 ml)

and pentane extraction in the ampoule. AOX was determined according to ISO 9562, with 2-

chlorobezoic acid as a standard, and nitrate wash of the column.

The biological stability of the ozonated water was determined using assimilable organic

carbon (AOC) analyses and heterotrophic growth response (HGR). In the AOC assay (I, III, IV,

VI, VIII), the growth of two inoculated bacterial strains (Pseudomonas fluorescens P17 and

Spirillum NOX) in a sterilized water sample was monitored for nine days (Standard Methods

1995). The results for strain P17 were expressed as �g acetate C eq/l and for strain NOX as

�g oxalate C eq/l. To ensure that nitrogen, phosphorus and other mineral salts were present in

excess, inorganic nutrients were added to pasteurized samples, as presented by Miettinen et

al. (1996b).

In the HGR assay (VII), the growth of indigenous heterotrophic bacteria in the water sample was

followed. The glass flasks for HGR samples were acid-washed and baked at 250 oC for 8 h.

HGR was defined as the maximum heterotrophic plate count (HPC) obtained during a three-

week incubation period at 15 oC. The HPC were obtained three times per week using either the

spread plate technique, with R2A agar incubated at 20±2 oC for 7 days.

The water samples for high-performance size-exclusion chromatography (HPSEC) were

stored at -18�C (V, VIII). The samples were first filtrated through a 0.45-�m cellulose

membrane filter (Millipore HA). Size-exclusion fractionation was performed using High-

Pressure Liquid Chromatography with a Hewlett-Packard Series 1050 pump and a Hewlett-
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Packard 4010 Series II Diode Array UV-detection system. The analytical column was a

TSKgel G3000SW 7.5 mm (i.d.) � 30 cm and the guard column a TSKgel 7.5 mm (i.d.) � 7.5

cm. The injection volume was 25 �l, column temperature 30�C and UV detection wavelength

254 nm. A 0.01 M sodium acetate solution eluent was used with a flow rate of 1 ml/min. The

data was analyzed using an HP ChemStation. In order to find the effect of ozonation on the

molecular size distribution of NOM, the height of each peak was compared to the height of

the same peak from the non-ozonated sample. Repeated analyses of the same water sample

were conducted to control the precision.

Heterotrophic bacteria were enumerated by the spread plate (III) or pour plate technique, with

R2A incubated at 20 oC for 7 days, and with standard plate count (SPC) agar incubated at 20 oC

for 3 days. The biomass of active bacteria was estimated with the adenosine triphosphate (ATP)

analyses of extracts from the duplicate GAC samples, extracted in a buffer with TCA by

applying ultrasonication for 20 minutes to enhance the release of ATP (IV). All the other

analyses were performed according to the relevant Finnish Standards. 
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3 THE PERFORMANCE OF TWO-STEP GRANULAR ACTIVATED

CARBON FILTRATION

3.1 Adsorption of natural organic matter

3.1.1 Adverse effects of natural organic matter in drinking water

NOM in water is a complex mixture of various compounds (such as humic substances, amino

acids and carboxylic acids) generally present in such low concentrations that qualitative and

quantitative analyses of specific molecules are difficult (Thurman and Malcolm 1981). The

high amount of NOM (median 12 mgTOC/l) in Finnish lake waters results from the large

proportion of the catchment that is covered by peatlands (Kortelainen 1993). Effective NOM

removal in drinking water treatment is needed, because of its several adverse effects. NOM

produces harmful disinfection-by-products and deteriorates the organoleptic quality, when

reacting with chlorine (Symons et al. 1975; O’Connor et al. 1975). Furthermore, NOM

increases the chlorine demand and may affect the corrosion rate of metals in the distribution

system (Lee et al. 1980). The biodegradable part of NOM promotes microbiological growth

in the biofilms of the piping system (Van der Kooij and Hijnen 1984). 

In some countries, acceptable NOM levels in tap water are set in drinking water legislation.

In the recent European drinking water directive (98/83/EY), NOM is no longer directly

controlled by limit values for TOC or oxidizability. Instead, new standards for disinfection-

by-products (trihalomethanes and bromate) and microbiological indicators (Clostridium

perfringens and Escherichia coli) were introduced as indirect controls for NOM. 

In the conventional drinking water treatment process, a large fraction of NOM is removed in

chemical coagulation, flocculation, sedimentation and sand filtration. If better control of

NOM is required, enhanced methods such as biological filtration, GAC adsorption or

membrane technology needs to be addressed. In recent years, nanofiltration has gained a lot

of interest owing to decreasing costs and superior water quality. However, even nanofiltered

water with TOC levels below the detection limit can support microbiological growth in the

distribution system without disinfectant residual (Noble et al. 1996; Sibille et al. 1997;

Escobar and Randall 1999).

3.1.2 Two granular activated carbon filters in series

Conceptually, two-step GAC filtration is a modification of the Mülheim process (Sontheimer

et al. 1978), where ozonation is followed by rapid sand filtration and GAC adsorption.
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Bouwer and Crowe (1988) suggested using two GAC adsorbers in series, the first adsorber

without regeneration and the second one with regeneration. In such an application,

biodegradation of AOC is expected to reduce the TOC load for the second GAC adsorber,

thus extending the service time i.e. regeneration frequency (Bouwer and Crowe 1988). In

addition, Snoeyink (1990) expected lower GAC usage rates (the mass of activated carbon

required per unit volume of water treated), when the GAC filters are arranged in series. He

suggested that when GAC is replaced in the first column, the flow is redirected so that it goes

through the freshest GAC last. Oxendorf and Lykins (1991) referred to an investigation, that

estimated the in-series operation would treat about 40 % more water than a single GAC filter.

Finally, Uhl et al. (1994, 1995) showed that a two-step GAC process with separate

biodegradation and adsorption results in longer service time of filter beds than the Mülheim

process alone. Besides Helsinki Water, e.g. Leiduin Plant in the Netherlands has recently

introduced two-step GAC filtration with a total EBCT of 40 minutes (Van der Hoek et al.

2000).

In our first phase study, we wanted to make sure that these expectations would come true in

Helsinki Water WTPs. Two-step GAC filtration was applied in four parallel pilot trains after

conventional treatment with and without preceding ozonation (VI). The first filter was filled

with exhausted GAC, while the second step contained fresh GAC (F400). In one reference

train, both steps were filled with fresh GAC (F400). A comparison between the reference

train and similar train with exhausted GAC revealed that unlike Bouwer and Crowe (1988)

predicted and Uhl et al. (1994, 1995) demonstrated, the first step filtration with exhausted

GAC did not significantly extend the service time of the following adsorber (2-step) (VI).

The fresh GAC filter (Run 4) as a first step adsorbed 42 % of the influent TOC during 291

days, while at the same time the similar 2-step process with the fresh GAC filter in the second

step (Run 3) adsorbed 40 % of the influent TOC (VI). Table 2 in Annex VI has some

calculation errors. For the corrections, see Table 2 below.

The benefits gained from installing two adsorbers in series are apparently related to the

service time of GAC. If the second GAC step has adsorption capacity left in the middle of the

service time when the flow is redirected, the two-step process uses GAC more efficiently

(lower usage rate) than single-stage adsorbers. On the other hand, if a long service time is

applied and GAC is fully exhausted already in the middle of the service time, the benefits

gained from using two-step GAC process are marginal. Our study showed that fully

exhausted first-step GAC filter could not improve the performance of a second-step adsorber
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and, therefore the expectations of Bouwer and Crowe (1988) did not come true in this water.

As can be seen from Figure 1, the point where GAC was fully exhausted with NOM seemed

to occur after filtration of 15 000 bed volumes, which represented approximately 290 days

with an EBCT of 15 minutes. Thus, if service time of more than 2 years is used, applying

two-step GAC process cannot be justified by the lower GAC usage rate. 

Although the operation of GAC columns in series did not result in improved performance

compared to single stage design, the simultaneous parallel operation of multiple columns will

minimize the GAC usage rate owing to blending. Dvorak and Maher (1999) demonstrated

that when multiple parallel columns are operated in a staggered fashion (where the columns

are placed on-line at different times), a system with 2-4 parallel GAC columns will give a

dramatic improvement in the GAC usage rate compared to a single column system. They also

observed that larger EBCTs utilize the GAC more efficiently. 

Table 2. Removal of TOC by two-step GAC filtration during the pilot study (VI).

Run 1 Run 2 Run 3 Run 4 
TOC applied to
contactors

Kg
kg/m3GAC

4.39
41.9

6.39
60.9

4.26
40.6

4.26
37.6

TOC removed in first
filter

Kg
kg/m3GAC

0.20 (6.0 %)
5.47

0.39 (6.0 %)
8.00

0.35 (8.1 %)
7.17

1.78 (42 %)
31.5

TOC removed in
second filter

Kg
kg/m3GAC

1.75 (40 %)
30.8

1.80 (28 %)
31.8

1.35 (32 %)
23.8

1.01 (24 %)
17.8

TOC removed in two-
step GAC filtration

Kg
kg/m3GAC

2.01 (46 %)
19.2

2.19 (34 %)
20.9

1.70 (40 %)
16.2

2.79 (66 %)
24.6

In addition to Figure 1, Annex VI shows the TOC breakthrough curves for the first 291 days

in each run separately. The breakthrough of oxidizability and ultraviolet absorbance at 254

nm (UVA254) were consistent with TOC (data not shown). The breakthrough of long-term

chlorine demand and UVA254 for the reference train (both filters filled with fresh F400) is

illustrated in Annex II. As expected, the adsorption of DBP precursors strongly correlated

with the decrease in TOC and UVA254 (II).

Also, the effect of EBCT on NOM adsorption in the studied range (10-15 min.) was minimal.

The breakthrough curve of the second-step GAC filter with a velocity of 8 m/h is almost

identical to a filter with 12 m/h, which indicates the same GAC usage rate. For the utility

with the on-site regeneration facility, this would allow smaller contact basins with shorter

EBCT in order to achieve the same NOM removal efficiency as with longer EBCT. However,
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the decreased construction costs increase the operational costs, because more frequent

regeneration is needed.
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Figure 1. TOC breakthrough curves for two-step GAC filters.

For an unknown reason, the y-intercept in the breakthrough curve of the ozonated train (v=8

m/h) suggested that 20 % of TOC was non-adsorbable. However this is not true, but the effect

is rather due to the wall-effect and short-cuts in the fresh GAC filter column, which both

decrease the actual contact time. During the backwashing (once a week) the number of

blocking GAC fines were decreased in the media and thus the filter trains were more

comparable after the first few weeks of operation. It is possible that a larger column diameter

than 200 mm could have prevented the wall-effects.

3.1.3 The type of granular activated carbon

The choice of GAC type is essential in efficient NOM adsorption. For example, Carlson et al.

(1994) reported seven times higher removal of TOC with GAC manufactured for adsorption

than with GAC for biological support. Before our pilot GAC study was conducted, several

different GAC types were compared in 50 mm diameter filter columns with 10 minutes of

EBCT. Figure 2 illustrates the importance of the choice of the GAC type by showing selected

UVA254 breakthrough curves of six different GAC types. 

Type F (Picabiol) is GAC manufactured for biological support and owing to its rapid

exhaustion it was used to demonstrate the effect of GAC age on the removal of different

molecular fractions in Annex V. The breakthrough curve of large and intermediate molecules
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was similar to that of TOC. However, the larger molecules seemed be less adsorbable than

the smaller ones and the smallest molecules were occasionally released into the filter effluent.
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Figure 2. TOC breakthrough curves for different GAC types (A-F).

In this study, the choice of GAC type was based on its adsorption properties for NOM. Thus,

the Type A (Filtrasorb F400), which showed the highest adsorption capacity for UV-

adsorbing compounds and TOC, was selected for most of the pilot-studies (I-VI).

3.1.4 Service time 

The cost of the GAC process depends on its service time for removing target compounds and

the need to replace or regenerate it once it loses its adsorption capacity. If the service time is

dictated by the operational criteria for the average finished water TOC, it is essential that the

start-up of a new GAC installation and the schedule of regeneration be carefully managed.

The following calculation based on the breakthrough curves in Figure 1 illustrates how the

selected operational criteria affects the service time of the single GAC filter pair.

The calculation is based on the following assumptions: 

1. The TOC removal in the exhausted GAC is gradually increased from 0.3 to 0.6

mg/l, when the EBCT is increased from 10 to 15 minutes, respectively. The

influent TOC (2.8 mg/l) is not subjected to seasonal changes.

2. The plant consists of 14 parallel two-step filter pairs, which are placed on-line in

a staggered fashion. This ensures that the plant consists of 28 GAC filters of

different age.
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3. Accordingly, the replacement of filters with fresh GAC takes place at even

intervals. For example, if the calculation gives a service life of two years, the

replacement of a single filter with fresh GAC will take place every month.

Before the replacement in a filter pair, the age of the first filter and the second

filter is two years and one year, respectively. During the replacement the flow is

redirected so that the age of the first GAC filter is one year and fresh GAC is in

the second step.

4. The adsorption capacity of GAC is not significantly deteriorated during

regeneration.

Figure 3 illustrates how the small changes in the targeted NOM removal rate significantly

affect the expected GAC service time. For the given operational criteria of 2.0 mgTOC/l, the

service life of 1 170 days (3.2 years) can be expected using the design parameters of the pilot

GAC plant. At Helsinki Water’s Pitkäkoski and Vanhakaupunki full-scale WTPs, a service

life of four years was expected for the total number of 28 filters in each plant. For

comparison, at Amsterdam Water Supply’s Leiduin WTP, the service life of the two-step

GAC filter is two years. Consequently, with a total of 40 filters, every 2-3 weeks a filter bed

is sent for regeneration (Van der Hoek et al. 2000). The impact of decreasing influent NOM

loading into GAC filters is discussed later in Section 4.1.1.
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Figure 3. Service life of GAC at different TOC targets.

3.1.5 Conclusions

The major factor that affects the effective NOM adsorption is the choice of GAC type and the

frequency of regeneration. In order to obtain treated water with constant NOM levels, the

replacement of GAC needs to be carefully managed. Other studied process parameters were

of minor importance in NOM removal. Neither the installation of two GAC filters in series,
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nor the longer EBCT in the studied range (10-15 min.) resulted in more effective use of GAC,

i.e. a lower GAC usage rate when a long service time is used. 

In order to obtain a clear picture of the operational criteria in GAC adsorption, the

economical benefits of effective NOM removal should be evaluated. This would allow

optimization of the service time of GAC beds and minimization of the overall costs that are

derived from frequent regeneration and NOM adverse effects in the distribution system. At

Helsinki Water, public health protection and customer satisfaction were already at a high

level before process modifications and thus were not the driving force for the investment.

3.2 Biological stabilization of drinking water

3.2.1 Introduction

It is well established that ozonation transforms NOM in a more available form for the

bacteria (Van der Kooij et al. 1989; Miltner et al. 1992; Kruithof et al. 1996). Therefore,

many post-ozonation plants have introduced biological filtration to limit bacterial regrowth in

the distribution system. In biological filtration, a large part of the biodegradable NOM is

eliminated by the heterotrophic bacteria attached to the filter media (Weber et al. 1978; Van

der Kooij 1979; Cairo et al. 1979; Servais et al. 1991; Cauchi et al. 1993; Cipparone et al.

1997). Compared to sand-anthracite filter media, GAC has several advantages. GAC provides

better NOM removal owing to adsorption and biodegradation especially at colder

temperatures. GAC establishes a biodegradable NOM-removing biofilm more rapidly,

provides increased protection against oxidant residual and permits faster establishment of

NOM removal after periods out of service (Urfer et al. 1997). Several authors have reported

that bacterial activity in GAC filters contributes to an increase in the GAC service life

(Werner et al. 1979; De Laat et al. 1985; Bouwer and Crowe 1988; LeChevallier et al. 1992;

Kim et al. 1997). 

Biodegradable NOM is generally quantified with the analyses of biodegradable organic

carbon (BDOC) or assimilable organic carbon (AOC). Our study measured the amount of

organic carbon available for microbial growth by AOC assay (I). AOC was determined with

salt addition to describe the part of AOC, which the test bacteria (P. fluorescens P17 and

Aquaspirillum NOX) can potentially use as their energy and carbon source without growth

limitations by inorganic nutrients (Miettinen et al. 1999). During our study, other researchers

showed that in many waters, phosphorus rather than organic carbon is the limiting nutrient

for the microbial growth in AOC assay (Miettinen et al. 1996a, 1997; Sathasivan et al. 1997;
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Charnock and Kjønnø 2000). Unfortunately, the amount of biologically available phosphorus

was not determined in our study.

According to Rittmann (1985), the kinetics of the biodegradation is controlled at least by

three factors: the mass transfer resistance, the amount of active biomass and the substrate

concentration. Carlson and Amy (1998) showed that the removal of biodegradable NOM was

controlled by the biomass concentration, only. Whichever the case, the amount of active

biomass is the only factor that can be controlled during the design and operation of GAC

contactors. Above a minimum biomass level, the temperature rather than the amount of

biomass is the rate-limiting factor for biodegradation (Urfer et al. 1997). In the following

chapters, different aspects of biological GAC filtration, i.e. filtration with exhausted GAC are

discussed separately.

3.2.2 The flux of substrates into the filter

The characteristics of NOM are the major factors that determine the extent of biodegradation

in the GAC media. NOM with greater diffusivity and faster degradation kinetics is removed

to a greater extent. Recently, it has been demonstrated that the presence of readily

biodegradable substrate significantly enhances the removal of slowly degradable NOM owing

to its ability to maintain higher amount of biomass in the filter media (Bouwer and Hozalski

2001). 

In our study, the first-step filtration with exhausted GAC decreased 51 % of AOCP17 and 72

% of AOCNOX from ozonated water (I), which was slightly lower than generally observed

(Van der Kooij 1990; Huck et al. 1994; Hu et al. 1999). Higher removal rates were attributed

to higher influent AOC concentrations. However, increased influent AOC also resulted in

increased effluent AOC (I). For example, if 500 µg-C/l of AOCNOX was introduced in the

exhausted GAC filter, 370 µg-C/l was removed and if 300 µg-C/l of AOCNOX was

introduced, only 200 µg-C/l was removed. The percentage reduction is 74 % in the first case

and 67 % in the second one, but the effluent AOC is still higher in the first case (130 µg-C/l)

than in the second one (100 µg-C/l). Similar findings have been observed with BDOC, but

with AOC a constant percentage removal has been proposed (Billen et al. 1992; Huck et al.

1994; Zhang and Huck 1996).

The AOC levels were generally higher than reported elsewhere (Charnock and Kjønnø 2000).

Volk and LeChevallier (2000) examined 95 treatment plants in United States, where the mean

AOC in finished water ranged from 18 to 214 µg Ac-C/l. In our study, the finished water
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AOC was 179±12 µg-C/l and 580±59 µg-C/l with and without GAC filtration, respectively

(III).  It must be noted that the AOC assay was performed with salt addition, and that the

AOC for strain NOX was expressed as �g/l oxalate C eq/l, which gives four times higher

values than if expressed as �g/l acetate C eq/l. In order to obtain comparable results with the

other published studies, we analyzed a single set of samples for AOC in the KIWA N.V.

laboratory, in the Netherlands, where the AOC assay was invented. In Table 3, all the values

are expressed as �g/l acetate C eq/l.

Although, the AOC levels that were determined in KIWA laboratory were much lower than

in our study, the AOC in finished water was still higher than recommended for biological

stability (10 �g/l acetate C eq/l). Interestingly in this single sampling campaign, the sand-

filtered water could be considered as biologically stable. The variation between two

laboratories could be attributable to several reasons, which demonstrates the need for careful

consideration when comparing absolute AOC values in different studies. Accordingly, the

definition of biologically stable water is quite arbitrary and the criteria must be established

based on the applied assay for determination of biological stability and the characteristics of

the distribution system.

Table 3. Comparison of AOC results (�g/l acetate C eq/l) between two laboratories

(22.4.1996).

AOC, with salt addition (1) AOC (2)

Sand-filtered water 40 4.5 ± 1.1

Ozonated water 185 84 ± 32

GAC filtered water 50 28 ± 6.8*

Finished water 70 28 ± 7.4
1) National Public Health Institute, Kuopio, Finland  (I, III, IV, VI, VIII, Miettinen
et al. 1996b)
2) KIWA N.V., Netherlands, KIWA standard LMB-014 (* One of the duplicate
bottles had a variation coefficient of the maximum colony count of 59 %)

3.2.3 The structure of carbon for bacterial attachment

The type of filter media may have significant influence on NOM biodegradation. Generally,

GAC provides a better NOM removal than sand or anthracite media (Li and DiGiano 1983;

Bablon et al. 1988; Servais et al. 1991; LeChevallier et al. 1993). However, Liu et al. (2001)
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concluded that easily biodegradable NOM can be effectively removed even at low

temperatures using either GAC or anthracite if there is no chlorine in the backwash water. 

Also, the type of GAC may affect biodegradation. For example, Wang et al. (1995) observed

a better performance of microporous coal-based GAC at steady-state compared to sand,

anthracite-sand and macroporous wood-based GAC, which they attributed to differences in

GAC surface, adsorption of substrates early in the bed life, residual adsorption capacity, and

the differences in the microbial communities. On the other hand, Carlson et al. (1994) found

no difference in TOC or DBP precursor removal between micro- and macroporous GAC

types. However, chlorine demand was more effectively reduced with macroporous GAC and

was less deteriorated by the low water temperature. Similarly, Prévost et al. (1991) found that

the amount of attached biomass was greater in macroporous GAC and suggested that shorter

contact times could be used with macroporous GAC in cold waters.

In our first pilot study (VI), the TOC removal in exhausted GAC filters varied between 6-8 %

(EBCT 8.5-13 min. v = 8-12 m/h, T = 4-12 oC), while the fully exhausted GAC filters (EBCT

15 min., v = 8 m/h, T = 4-10 oC) in the second study (IV) contributed to 12-14 % reduction in

TOC. In a pilot-scale WTP (EBCT 13-14 min., v = 6 m/h, T = 4-11 oC), the TOC reduction

of 11-12 % was achieved in a study where two coagulants were compared as a pretreatment

for GAC (data not shown). The most significant difference between the conditions of these

studies was the different batch of Filtrasorb 400 that was used in the exhausted GAC filters of

the first study. In all our studies, the NOM removal efficiency was quite low in comparison to

those generally observed (Bouwer and Crowe 1988; Dussert and Tramposch 1997; Urfer et

al. 1997).

Our other, unpublished study compared the performance of macroporous wood-based

Picabiol and microporous charcoal-based Filtrasorb 400 in NOM removal. As already

illustrated in Figure 2, Picabiol had a low adsorption capacity for NOM. After the short

adsorptive phase, the removal of TOC, UVA254, AOC and chlorine demand did not

significantly differ from the reductions in the Filtrasorb 400 GAC filter (Table 4). However,

the HPC of the Picabiol filter effluent significantly increased during the first two months of

operation after which it remained stable (Figure 5). The higher HPC levels in the wood-based

GAC filter effluent might be explained by the macroporous structure of Picabiol, which

offers more suitable sites for bacterial attachment than the microporous structure of the

reference filter, or simply by the higher initial phosphate concentration in wood-based GAC,

which stimulated the growth of free-living bacteria (IV). The latter explanation is supported
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by Wang et al. (1995), who could not find a difference in biomass accumulation between

F400 and Picabiol, but observed slightly better performance of F400 in TOC and AOC

removal. Although they did not report the phosphorus levels, it is possible that in their water

phosphorus was not limiting the microbial growth and thus the wood-based GAC media did

not enhance the biodegradable NOM removal. It should also be noted that the increase in

effluent HPC number does not necessary indicate increased bacterial biomass in the GAC

media. 

Table 4. The average HPC in the exhausted GAC filter effluent, and the removal of UVA254,

TOC, AOC and long-term chlorine demand.

Picabiol Filtrasorb 400

Effluent HPC 3000 CFU/ml (n=6) 170 CFU/ml (n=4)

UVA254 7 % (n=12) 9 % (n=11)

TOC 10 % (n=9) 10 % (n=8)

AOC 83 % (n=2) 79 % (n=1)

Chlorine demand (7 days) 19 % (n=3) 24 % (n=3)

3.2.4 Empty bed contact time

Contact time, usually expressed as EBCT, is one of the most important variables for

biological filtration (Urfer et al. 1996; Huck et al. 1998). Increasing the EBCT usually

increases the biodegradable NOM removal (Sontheimer and Hubele 1987; Merlet et al. 1991;

Servais et al. 1992; LeChevallier et al. 1992; Prévost et al. 1992), although effective

reduction of biodegradable NOM may be achieved with a relatively short 5-9 minutes of

EBCT (Hozalski et al. 1995; Koffskey and Lykins 1999; Carlson and Amy 2001). Since the

external mass transfer plays a minor role in biodegradable NOM removal, hydraulic loading,

i.e. velocity seems to be a less important design parameter (Servais et al. 1992; Urfer et al.

1996). Instead, the utilization of the substrate, which is a function of EBCT and biomass

concentration, appears to limit biodegradable NOM removal (Wang et al. 1995). To sum up,

EBCT is an acceptable design parameter throughout the range of hydraulic loading rates and

filter bed depths (Carlson and Amy 1998).

In our study, the effect of EBCT was compared in two parallel ozonated pilot plant trains,

which were operated with an EBCTs of 8.5 and 13 minutes, respectively (VI). Table 5

summarizes the percentage removal of NOM in the exhausted GAC filters.
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Table 5. NOM removal in the exhausted GAC filters with different EBCTs.

EBCT 8.5 min. 13 min. n

UVA254 7 % 8 % 42

TOC 7 % 8 % 23

Oxidability 14 % 13 % 10

AOC 68 % 69 % 5

Chlorine demand (7 days) 13 % 15 % 3

It can be seen that the increase in NOM removal is minimal when the EBCT is increased

from 8.5 to 13 minutes. The curves for TOC removal efficiency are shown in Figure 1 and

VI, from which it is concluded that the studied EBCT range did not affect the biodegradation

of TOC. The results show that the provided time was enough for efficient AOC removal, but

the decrease in slowly biodegradable NOM degradation was limited. Others have suggested

that most of the rapidly biodegradable compounds (like AOC) are removed in the upper

layers, while the contact time needed for the removal of chlorine demand and slowly

biodegradable compounds (like BDOC) is longer (Prévost et al. 1992).

The effect of longer EBCT is illustrated in Table 6, where the NOM removal in two

exhausted serial GAC filters is summarized. The limited data describes the NOM removal of

Run 4 in Annex VI during operation days 389-473. It must be noted that the values cannot be

compared with Table 5, because the GAC properties were different in this GAC batch. The

substantially better response to an increase in EBCT is probably due to remaining adsorption

capacity and better performance of two separate serial filters, where the mass transfer zone is

not mixed during the backwashing.
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Table 6. The effect of EBCT on NOM removal in the exhausted two-step GAC filters.

EBCT
15 min.
(1-step)

30 min.
(2-step) n

UVA254 9 % 21 % 42

TOC 10 % 18 % 23

Oxidability 14 % 21 % 10

Chlorine demand (7 days) 24 % 32 % 3

The decrease in long term chlorine demand (7d) was higher than the TOC or UVA254

removed in exhausted GAC filters, suggesting that GAC preferentially remove compounds

susceptible to reactions with chlorine (II). Merlet et al. (1991) observed similar results and

suggested that the part of NOM that can be biologically removed is more reactive to chlorine

than refractory carbon.

3.2.5 Operating at low temperatures

Decreasing temperature increases the acclimatization period needed to achieve biological

activity in the GAC filter and the contact time for removing the same amount of

biodegradable NOM (Servais et al. 1992; Krasner et al. 1993; Moll and Summers 1999;

Hozalski and Bouwer 2001). The simulations by Hozalski and Bouwer (2001) indicated that,

when operating at temperatures below 9 oC, the accumulation of biomass and removal of

biodegradable NOM are severely inhibited. Moll and Summers (1999) found that operating at

5 oC was detrimental to biomass growth and substrate removal. They also showed that low

temperature not only decreases the rate of substrate metabolism, but also changes the

microbial community structure (Moll et al. 1999). On the other hand, Fonseca et al. (2001)

demonstrated that operating temperature did not affect total amount of biomass in biofilters.

However, the microbial (dehydrogenase) activity was 70 % higher at 12 oC than at 3 oC. 

In our studies, there was no obvious correspondence between the TOC removal with

exhausted GAC and temperature, which varied between 4-14 oC (VI); the decrease in UVA254

and oxidizability showed no correlation with the temperature either (data not shown).

However, as illustrated in Figure 4, the HPC in the GAC filter effluent decreased as

temperature decreased. The figure shows the effluent HPC in the filter pair, where both the

filters were filled with fresh GAC at the beginning of the study.



35

1

10

100

1000

10000

11 60 109 151 200 242 291 333 375 424 473

Operation time (d)

H
PC

 (C
FU

/m
l)

0
2
4
6
8
10
12
14
16

Te
m

pe
ra

tu
re

 ( 
o C

)

1-step effluent

2-step effluent

water
temperature

see Fig.5

Pilot GAC plant 
characteristics:
v = 8 m/h, O3, 
fresh GAC (F400), 
h = 2 x 2 m, 
EBCT 15+ 15 min

Figure 4. Heterotrophic plate count (HPC) and temperature in the two-step GAC effluent.

Koffskey and Lykins (1999) found no indication of a reduction in biological activity during

the low temperature period (6-10 oC), when monitoring effluent HPC, AOC and DOC.

Similar results were reported by Carlson et al. (1994), who found that in the temperature

range of 5-30 oC, TOC removal was not affected. By monitoring the reduction of dissolved

oxygen (DO), they observed an increased degree of biological degradation during the

summer months. However, AOC was not measured. In our study, the decrease in DO

remained typically in the range of 0.3-0.4 mg/l and 0.4-0.8 mg/l in exhausted and adsorptive

GAC filters, respectively (data not shown). The DO consumption was much lower than

observed by Carlson et al. (1994) and did not appear to be a good surrogate parameter for the

low degree of biological activity. In order to assess the expected impact of temperature

fluctuations on AOC removal in our study, a broader database would be required (I). 

3.2.6 Nutrient limitation

The amount of assimilable organic carbon is often regarded as the limiting factor for the

growth of heterotrophic microorganisms in drinking water (Van der Kooij 1982).

Nevertheless, there is evidence that in some drinking waters the growth of bacteria in the bulk

water can be stimulated by the addition of microbially available phosphorus (MAP), such as

ortophosphates (Miettinen et al. 1996a, 1997; Sathasivan et al. 1997; Sathasivan and Ohgaki

1999). In our waters, the nutrient limitation in AOC assay (data not shown) suggested that

part of the biodegradable NOM could not be utilized in the GAC filter owing to nutrient

limitation. Although we were not aware of any previous studies showing improved



36

biodegradation in the GAC filter owing to nutrient addition, we were encouraged to study

whether it could stimulate bacterial growth in our exhausted GAC filters (IV).

To our disappointment, the addition of nutrients had no statistically significant influence on

the NOM removal when monitored by TOC, UVA254 and AOC (IV). However, in the limited

number of samples, the nutrient addition increased the HPC of the filter effluent, while the

amount of active biomass on GAC measured by the adenosine triphosphate (ATP) analyses

did not show any increase. The limited information suggested that phosphorus could be a

limiting nutrient, but the increased bacteria could not attach themselves during the relatively

short acclimatization period in the GAC media (IV).

During our study, the assay for MAP was not available (Lehtola et al. 1999) and therefore

unfortunately not performed. Based on other more recent investigations, it seems that the

limiting nutrient in all the targeted waters after chemical treatment was MAP (Lehtola et al.

2002b). It was also shown, that the MAP concentrations in the studied raw water and

drinking water were 5.55 �g/l and 0.48 �g/l, respectively (Lehtola et al. 2002b). It must be

noted, that there is a typing error in Annex IV: the total phosphorus concentration in raw

water is 6-8 �g/l, instead of 6-8 mg/l.

It has been demonstrated that chemical coagulation effectively decreases the concentration of

biologically available phosphorus (Sathasivan and Ohgaki 1999; Lehtola et al. 2002b), thus

making it possible that MAP is partly the limiting nutrient in many GAC applications

following coagulation. This assumption is supported by the general observation from several

WTPs where the concentration of total phosphorus after GAC filtration declined below the

detection limit of 2 �g/l and the MAP was decreased by 47 % (Lehtola et al. 2002b).

Nishijima et al. (1997) showed that in some cases the bacterial colonization in GAC media is

more rapid with phosphorus addition. Recently, Lehtola et al. (2001) revealed that similar to

AOC, ozonation increases the amount of MAP. Thus, it is possible that part of the increased

NOM degradation in ozonated biofilters could be due to increased amount of MAP.

It remained unclear whether the phosphorus limitation occurred only in the bulk water. It is

possible that phosphorus did not limit the biomass accumulation, because of the phosphorus

turnover from the lysed cells, or because of the accumulation of phosphate within the biofilm

matrix, which is in accordance with the observation that the amount of active biomass was

not increased owing to phosphorus addition (IV). Chandy and Angles (2001) have recently

obtained similar results in the annular reactor, where the addition of phosphorus did not result
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in additional biofilm development compared to reactor without phosphorus addition.

Furthermore, Appenzeller et al. (2001) observed that phosphate addition limited the

proliferation of heterotrophic bacteria in corroded pipes by modifying the the properties of

corrosion products. Meanwhile, Keinänen et al. (2002) observed changes in the microbial

community structure in drinking water biofilms due to the addition of phosphate. Recently,

Lehtola et al. (2002a) revealed that the addition of phosphate can increase the amount of

active biomass and the total number of bacteria in laboratory biofilm experiments. It appears

that in most of these studies, biologically available carbon is present in excess (Rompré et al.

2000; Appenzeller et al. 2001; Chandy and Angles 2001), while in the Finnish experiments

(Lehtola et al. 2002a; Keinänen et al. 2002) MAP is the limiting nutrient for the bacterial

growth.Thus, the latest research shows that increased phosphorus levels in the plant effluent

may also stimulate the bacterial regrowth in the distribution system. . Therefore, until the role

of phosphorus recycling and accumulation in the distribution system biofilm is carefully

examined, the addition of phosphorus in excess should be avoided in those systems where it

could be the limiting nutrient in some parts of the network. This issue is further discussed in

section 5.1.

3.2.7 Colonization of biomass onto GAC media 

The biomass on the GAC filter accumulates owing to deposition and growth as the water

flows through the filter bed. At the same time, the biomass is removed from the filter media

by decay, fluid shear and backwashing. Mostly, the biomass losses occur from backwashing,

as discussed later in Section 3.3.2. Hozalski and Bouwer (2001) have recently illustrated in

their modelling work that, if the biomass lost during backwashing does not exceed 60 %, it

has a minor impact on biodegradable NOM removal. In our full-scale study, the reduction in

active biomass was increased by increasing the duration of backwashing and by introducing

air scour (Mikola 1999). However, the loss in biomass always remained below 60 %.

It has been estimated that the colonization of the GAC filter with biomass into the steady-

state condition takes approximately three months (Cauchi et al. 1993). At decreased

temperature, colonization can take much longer. In our study, the colonization was indirectly

monitored by the effluent HPC, which started to increase soon after the beginning of the

experiment (Figure 4). The type of GAC strongly affected the effluent HPC. In the filter pair

with fresh Picabiol GAC, the effluent HPC was significantly higher than in other runs and

showed a slight increase during the first two months of operation, which could be partly

attributed to the increase in temperature (from 4 to 10 oC) at the same time (Figure 5.). The
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minor changes in the effluent HPC in most runs can be explained by bacterial detachment in

the beginning of the filter run. It is suggested that the detachment of bacteria is related to the

phase of bacterial growth. Once the colonization on the GAC media has reached a steady-

state, the effluent HPC decreases (Cairo et al. 1979). 
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Figure 5.Increase in effluent HPC (R2A or TH, 20 oC, 7 d, pour plate) as a function of time

(fresh Picabiol in both columns).

In order to obtain more reliable results of the biological activity in the GAC filter, the amount

of the attached biomass needs to be estimated in addition to effluent HPC. During our study,

ATP analyses were adapted for the measurement of active biomass on the GAC media, which

proved to be a more suitable indicator than effluent HPC for assessing the biological activity

in the GAC filter. Unfortunately, the number of samples in this study was too small to give

any conclusive results.
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The minimal impact of GAC age on AOC removal suggests that adsorption has a minor role

in the biological stabilization of drinking water (I). Figure 6 shows the unpublished AOC

breakthrough curves for two GAC adsorbers in series. The TOC, UVA254 and chlorine

demand breakthrough curves for this filter pair are shown in Annexes II and V.

3.2.8 Distribution of active biomass

According to the literature, it seems that a minimum biomass is needed for biodegradation,

but above the minimum, the amount of biomass is not critical for the rate of biological NOM

removal. Consequently, the increase in biomass does not necessarily result in increased NOM

removal and it cannot be used as a sole indicator of the biological GAC filter performance

(Wang et al. 1995, Moll et al. 1999, Fonseca et al. 2001). Better correlation could be

achieved by using microbiological activity assays.

Several studies have shown that the inlet part of the GAC filter bed is biologically more

active than the rest of the filter (Servais et al. 1991, 1992; Wang et al. 1995; Moll et al. 1999;

Van der Hoek et al. 2000). This can be seen as a decrease of biomass and as a difference in

microbial community structure as a function of filter depth due to a decrease in labile

substrates through the filter bed (LeChevallier et al. 1992; Moll et al. 1998, 1999). It seems

that most of the AOC is removed during the first two minutes, while a longer contact time is

needed for the removal of chlorine demand and BDOC (Prévost et al. 1991, 1992). Thus,

selecting EBCT based on BDOC removal efficiency results in more conservative design

values than the use of AOC alone. In order to obtain more accurate design criteria and a more

complementary view of the biodegradable NOM removal (Kaplan et al. 1994; Volk and

LeChevallier 2000; Escobar and Randall 2001; Sharp et al. 2001), a combination of bio-film

based methods, such as biofilm annular reactor method, and different standard NOM

measurements, such as AOC and BDOC, should have been used in our study.

If AOC removal mainly appears in the top layers of the GAC bed, it could be expected that it

be accompanied with a higher amount of the active biomass. However, we could not observe

any vertical distribution of active biomass in the full-scale adsorptive filter beds (IX), which

could have resulted from the low temperature, deep GAC bed or backwashing with air.

Servais et al. (1991, 1992) observed a vertical distribution of bacterial biomass in GAC beds

at 20 oC, but not at 9 oC. Liu et al. (2001) observed biodegradable organics removal

throughout the entire filter bed at lower temperatures (5oC), whereas it occurred only in the

top layers of the filter at higher temperatures (20oC). Billen et al. (1992) showed a decreased
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stratification of bacteria, when the GAC bed depth was increased, i.e. filtration velocity was

increased. In the studies of Beaudet et al. (1996), the use of air scour in backwashing broke

the bacterial stratification in the GAC bed. 

Since the flow of substrates is higher in the first GAC filter step, it is expected that also the

amount of biomass is higher in the first filter. Our full-scale study indicated that the amount

of active biomass did not differ between the first and second step filters, when both of the

filters were still in the adsorptive phase (IX). A single sampling experiment in our exhausted

two-step pilot filters showed significantly higher ATP and detached HPC in the first step

GAC media than in the second step (Niemi and Heiskanen 1997). However, the effluent HPC

was lower in the first step effluent than in the second step. 

The observed bacterial activity in both of the filter steps contradicts the expectations of

Bouwer and Crowe (1988). They suggested that the bacterial activity in the second GAC step

would be minimal, because nearly all the biodegradable NOM is removed in the first step.

This could have been attributable to overestimating the capability of heterotrophic bacteria to

degrade slowly biodegradable NOM. Similar to our study, the case study in Jefferson Parish,

LA, USA showed that during the passage through the GAC filter, the HPC increased by 3 to

4 logs and remained at these higher levels with subsequent serial passage through the

following GAC filters (Geldreich 1996). 

3.2.9 Conclusions

Although exhausted GAC contributed only to a minor decrease in NOM concentration, it

effectively stabilized NOM. It seems that exhausted GAC filtration is a feasible method for

decreasing AOC even when treating cold humic waters. The frequent regeneration of GAC is

not necessary for the biological stabilization of NOM.

Improving the performance of NOM biodegradation in a GAC filter by increasing the EBCT

does not appear to be an economically feasible solution. A major portion of rapidly

biodegradable compounds is removed with a relatively short EBCT of less than 10 minutes.

However, it must be noted that NOM consists of both rapidly biodegradable compounds,

which bacteria can directly use for metabolism, and slowly biodegradable compounds such as

humic substances, which can partially be degraded after exoenzymatic action. Optimizing the

GAC type for biodegradation or adding inorganic nutrients did not provide additional NOM

removal. Instead, they increased the HPC in the GAC effluent and could possibly increase the

risk of bacterial contamination in the distribution system.
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The primary limitation for effective biodegradation was the nature of NOM. Although, the

relative proportion of the biodegradable NOM was small, it yielded a high AOC level in

ozonated water and was effectively reduced in exhausted GAC. The AOC reduction in the

GAC filter was more effective with higher influent AOC values, which suggests that the flux

of substrates limited effective biodegradation in the exhausted GAC filter. 

Although the biodegradation rate did not depend on water temperature, it seemed to effect the

effluent HPC. Since we could not observe any correlation between low temperature and

performance for NOM removal in GAC filters, it is possible that the attached biomass was all

the time below the level, at which biodegradation is limited by temperature. Neither, we were

able to show any relationship between active biomass in GAC media, effluent HPC and

biodegradation of NOM. It seems that the increase in effluent HPC does not necessarily

indicate an increase in attached biomass on GAC, which in turn does not correlate with the

NOM biodegradation. More comprehensive research and a database are required before

concluding what is the most feasible monitoring parameter for the effectiveness of GAC

biodegradation.

3.3 Release of particles

3.3.1 During the filter run

In biological processes, a small amount of bacteria that colonize the surface of the GAC is

always released into the treated water (AWWA 1981; Wilcox et al. 1983; LeChevallier et al.

1992). Mostly, these free living bacteria are harmless and easily disinfected. Sometimes, the

GAC filter may colonize potentially pathogenic micro-organisms and micro-organisms of

faecal origin (Camper et al. 1986; Stewart et al. 1990), thus increasing the risk of bacterial

contamination of the drinking water. However, the pathogens do not usually succeed in the

competition with the natural heterotrophic bacteria in an oligotrophic environment (Camper

et al. 1985; Rollinger and Dott 1987). It also seems that the bacteria released from the

biologically active filters are unlikely to colonize in the distribution system owing to high

level of competition with the previously established biofilm organisms (Norton and

LeChevallier 2000)

Several researchers have shown that during the operation of the GAC filters, a small number

of GAC fines is released into the finished water (Amirtharajah and Wetstein 1980; Camper et

al. 1986, 1987; Stewart et al. 1990, Stringfellow et al. 1993). These fines provide a shelter for

bacteria against the oxidative disinfectant (Ridgway and Olson 1981; LeChevallier et al.
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1984, 1988; Stewart et al. 1990) and contribute to the formation of loose deposits, which are

re-suspended into the water during changes of the hydraulic conditions in the distribution

system (Gauthier et al. 1999). This may generate not only complaints from customers, but

also pose a threat to the public health if the deposits are colonized with the opportunistic

pathogens (Camper et al. 1986; LeChevallier 1990; Stewart et al. 1990). On the other hand,

more recent findings suggest that the small number of released GAC fines, colonized by a

small number of organisms, may not be a threat if normal disinfection is applied (Morin et al.

1996; Morin and Camper 1997; Pernitsky et al. 1997). It must be noted that the studies refer

to disinfection practice in the United States, where much higher chlorine doses are

maintained in the distribution system than in Europe. 

The concern of an excessive release of GAC fines may be especially important if the

underdrain system of the GAC filter is damaged or is generally in such a poor condition that

the GAC media can escape into the treated water (Stringfellow et al. 1993). A layer of sand

(0.3-0.5 m) as a support for GAC may prevent the escape of GAC fines in the finished water

(Dussert and Van Stone 1994).

Our full-scale study (IX) showed that the hydraulic step i.e sudden increase  in hydraulic

loading was accompanied with rapid increase in GAC effluent turbidity and total suspended

solids (TSS). The microscopic analyses of the glass-fibre filters in the TSS analyses revealed

that a significant number of GAC fines were released from the filter bed into the finished

water. The hydraulic step was due to backwashing in other filter pairs and the recycling of

filtrates from the GAC and sand filters. However, when the water flow rate was slowly

increased under controlled conditions, no significant increase in turbidity occurred. 

Similarly, Cleasby et al. (1963) demonstrated that the hydraulic step resulted in particle

detachment into the filtered water. Ahmad et al. (1998) observed that a 30 % increase in

water flow rate caused the previously deposited material to be flushed into the effluent.

However, the HPC was not affected suggesting that the shear forces needed for the

detachment of hydrophobic bacteria are higher than those needed to dislodge hydrophilic

non-biological particles (Ahmad and Amirtharajah 1998). Recently, Huck et al. (2002)

showed that hydraulic step (25 % increase in filtration rate) had little effect on

Cryptosporidium oocyst concentration, but did increase turbidity and particle counts in some

experiments.

Owing to the sensitivity of the GAC filter, it is critical to carefully consider the flow

conditions in the process design. The plant must be designed to avoid hydraulic steps, e.g.
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when one filter pair is taken into the backwashing procedure. The contradictory results in

different studies indicate that not all the variants affecting the release of GAC fines are

established. Our results are different from those obtained e.g. by Stringfellow et al. (1993),

who concluded that the mass of carbon fines entering the treated water is small. They could

not find any difference in the release of carbon fines between old, reactivated and new GAC.

With the chlorine doses usually involved in the USA, the low concentration of colonized

particles was not thought to penetrate the chlorine barrier. Apparently, more research is

needed to assess the effects and quantity of GAC fines in the distribution system biofilms and

deposits, and to create effective measures in controlling the release of GAC fines during the

operation and backwashing of GAC filters.

3.3.2 During the filter-ripening sequence

Frequent backwashing of biological GAC filters is needed to remove biomass and non-

biological particles, and to prevent the growth of protozoa in the filter media. Backwashing

controls the development of filter head-loss and limits the accumulation of particles and flocs,

which may inhibit the bacterial activity and decrease the actual contact time in the filter

(Niquette et al. 1998). Unless backwash water contains high levels of chlorine, the bacterial

biomass attached on the GAC surface is not sufficiently removed and the biofilter

performance is impaired during backwashing with water alone (Servais et al. 1991, 1992;

Miltner et al. 1995; Hozalski and Bouwer 1998). In an adsorber, backwashing should be

minimized in order to prevent mixing of the bed (Snoeyink 1990). However, it is quite

theoretical to separate biological and adsorptive GAC filtration, because in all the GAC filters

both mechanisms take place simultaneously.

Backwashing two-step GAC filters involves a different strategy for both steps. Before the

study, it was assumed that the particle release from the first-step filter is not critical, because

the following step would prevent particles escaping from the filter pair. Accordingly, it was

expected that the filtrate recycling during the filter-ripening sequence (FRS) of the first GAC

step was not necessary. However, the study revealed that the second-step filter could not

retain particles released during FRS of the first-step GAC filter (IX). This suggests that the

tolerance of the GAC bed against rapid changes in the loading was low and there is a need for

filtrate recycling during FRS of the first GAC step as well.

Insufficient removal of biomass and non-biological particles may be a problem for

unchlorinated water backwash at low bed expansions (Hozalski and Bouwer 1998). Since
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chlorinated water backwash may be detrimental to biological activity in the filters, enhanced

backwash with air-scour has been introduced. Air-scour generally cleans GAC media much

better than water-only backwash and impairs neither AOC removal nor biological activity

(Ahmad et al. 1998). However, controversial results exist about the effects of air-scour on

GAC characteristics. Some authors state it is possible that during air-scour backwash, the

GAC breaks apart and results in a greater pressure drop over time, a greater loss of carbon

during backwash and a release of carbon fines during filtration (Boller and Kavanaugh 1995;

Humby and Fitzpatrick 1996). On the other hand, Grens and Werth (2001) found only a

marginal effect on the particle characteristics during 500 air-scour backwash cycles in pilot

filters. Our full-scale study demonstrated that air-scour backwash increased the release of

carbon fines due to grinding of GAC (IX). As already noted by Hozalski and Bouwer (1998),

more research is needed to define an optimum backwash strategy for GAC filters and the

effects of air scour backwash.

3.3.3 Conclusions

In order to obtain effective removal of biomass and non-biological particles from GAC filter

bed, many utilities apply backwash with air-scour. To limit the accumulation of colonized

GAC fines in the distribution system, careful attention should be paid to the factors that affect

the detachment of particles during FRS and filter run, unless it can be shown that the bacteria

attached in the GAC fines are efficiently disinfected and that they do not provide any harm in

the tap water, and in the biofilm and deposits of the distribution system. A site-specific

backwashing strategy needs to be established in the varying operational conditions, which

reflect the changes in temperature, hydraulic loading, GAC age and influent water quality.
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4 THE CHALLENGES IN THE OPTIMIZATION OF THE UPDATED

TREATMENT PROCESS 

4.1 Enhanced coagulation

4.1.1 Increase in GAC service life

Effective NOM removal in coagulation increases the GAC filter’s useful service life by

reducing the TOC load for GAC filters and by increasing the adsorptive capacity of GAC for

the remaining NOM (Semmens and Field 1980; Randtke and Jepsen 1981; Hooper et al.

1996; Semmens et al. 1986b, Hozalski et al. 1995; Nowack et al. 1999). Although the

relatively low specific UV absorbance in our raw water (2.7 m2/g) suggested that the water is

not amenable to coagulation (Edzwald 1993), alum coagulation and sand-filtration efficiently

removed the largest molecular fractions of NOM (V). The fraction of the largest molecules

disappeared completely and the next two fractions were reduced by 92 % and 85 %,

respectively. At the same time, the TOC reduction averaged 52 % (V). The seasonal variation

of NOM size distribution was minimal (data not shown).

In enhanced coagulation higher coagulant doses are used, the pH of the raw water is

optimized and/or the coagulant type is selected to achieve maximum NOM removal in

addition to the decrease in suspended particles (Cheng et al. 1995; Crozes et al. 1995). In

some cases, iron salts appear to remove NOM more efficiently than alum; in other cases

NOM has a greater affinity for iron than for alum (Kavanaugh 1978; Randtke and Jepsen

1981; Randtke 1988; Julien et al. 1994; Crozes et al. 1995; Bell-Ajy et al. 2000). The studies

performed at Pitkäkoski WTP showed that, in this water, ferric chloride sulphate was far

more efficient in NOM removal than aluminium sulphate. In optimal conditions for NOM

removal, a TOC of 2.4 mg/l and 1.7 mg/l was achieved with aluminium sulphate and ferric

chloride sulphate, respectively (Pyrhönen 1997). Owing to low raw water alkalinity (28 mg/l

CaCO3), coagulant dosage alone was efficient in achieving the optimal pH for NOM removal.

Semmens et al. (1986b) has demonstrated that the coagulant dosages required to optimize the

cost of water treatment by GAC are typically higher than those for normal turbidity removal

are. It is obvious that to minimize the overall cost of the NOM removal, enhanced

coagulation is required. Figure 7 illustrates the increased service life of GAC columns

resulting in enhanced coagulation with iron. This unpublished study was performed in the

pilot-WTP at Pitkäkoski WTP. The breakthrough curves indicate a better performance of
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GAC adsorber when it is preceded by iron coagulation. Nowack et al. (1999) expected higher

adsorbability of NOM after iron coagulation, which could result from iron neutralizing the

charge of TOC, from the multivalent cation causing individual organic molecules to take a

more compact shape, from iron cations forming a bridge between the negatively charged sites

of the GAC surface and the NOM, or from all three of these effects. In our study, the mass of

adsorbed TOC into GAC was 0.64 kg and 0.50 kg in the treatment trains with alum and iron

coagulation, respectively. Since the filters were not fully exhausted during the study period

(126 days), the expected increase in adsorbability was not observed.
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Figure 7. Effect of pretreatment coagulant type on breakthrough of TOC in two-step GAC

filters.

4.1.2 Turbidity and soluble metal control

Optimizing coagulation for turbidity removal effectively reduces the density of bacteria and

viruses in raw water. However, increasing the coagulant dose without consideration given to

pH may result in increased bacteria, turbidity and soluble metal levels following

sedimentation and sand filtration. A significant amount of dissolved manganese may release

from iron salts unless it is specified as highly pure. An increased soluble metal concentration

may cause a non-compliance with the drinking water standards (98/83/EY). On the other

hand, optimum coagulation conditions for NOM removal may sometimes decrease turbidity,

particle counts and residual metal concentrations (Vrijenhoek et al. 1998; Bell-Ajy et al.

2000). 

The presence of flocs and particles on the GAC may disturb the substrate and oxygen

diffusion to the biomass thus inhibiting the biological activity and NOM removal, which

however is restored during filter backwash (Niquette et al. 1998, 1999). Conversely, in the

more recent study Liu et al. (2001) could not observe any deterioration in biodegradable
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NOM removal due to addition of nonbiological particles (kaolinite clay, dosage 1.5 mg/l) or

coagulants (aluminium sulphate, dosage 3 mg/l). 

If iron coagulation precedes GAC filtration, iron may accumulate onto the GAC through

precipitation, ion exchange or chelation with organic compounds. During the thermal

regeneration, iron may catalyze the oxidation of carbonaceous materials and thus change the

pore structure of GAC and deteriorate the adsorption capacity. However, Cannon et al.

(1997) showed that the presence of naturally occurring sulphur in GAC inhibits the catalyses

of coal-based GAC gasification. Therefore, in practical applications, neither aluminium,

which is not catalytic, nor iron accumulation do not seem to have a significant influence on

the quality of GAC during regeneration. What is more important, also calcium aggressively

catalyses gasification and dramatically alters the GAC pore structure despite the presence of

sulphur (Knappe et al. 1992; Cannon et al. 1993). If re-alkalization is performed, it appears to

be more important to minimize the calcium content in the spent GAC by postponing the lime

addition after GAC filtration than to avoid the accumulation of iron onto GAC.

In our study, the two-step GAC filtration effectively reduced the concentrations of Fe and Al

in the filter influent in the pH range of 6.5-7.5. The average Al reduction in five different

pilot two-step GAC filter runs varied between 61-86 % and the average effluent Al

concentration always remained below 0.02 mg/l (data not shown). The average Fe reductions

in the pilot WTP study were 34 % and 69 % and the average effluent Fe concentration were

0.03 mg/l and 0.02 mg/l, at pH 7.0 and 6.5, respectively (data not shown). However, the

differences resulting from the pH change were not statistically significant. Further research

should determine the Fe removal rate at a lower pH range, the impact of precipitated metals

on the bacterial activity, and the role of backwashing in the accumulation of metals on the

GAC bed.

4.1.3 Conclusions

The results clearly reveal that in this type of process configuration NOM removal can be used

as a primary criterion for the optimization of coagulation conditions, because the following

filtration steps effectively remove the residual iron and aluminium, and they provide

additional  barriers against particles, residual metals and turbidity. In the studied water, ferric

chloride sulphate proved to be far more effective in NOM removal than aluminium sulphate.

Therefore, further investigations should focus on the site-specific practical aspects, such as
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flocculation time and sand-filter performance, which need to be taken into consideration

when replacing alum with iron.

4.2 The role of ozonation

4.2.1 Primary disinfection

Although the proliferation of pathogens in the GAC bed is unlikely (AWWA 1981; Camper

et al. 1986), a substantial number of coliforms and other organisms of public health concern

may release from the GAC filter media unless appropriate disinfection is provided prior to

biological filtration (Wilcox et al. 1983; Camper et al. 1986; Stewart et al. 1990; Morin et al.

1996). Recently, Carlson and Amy (2001) proposed that when utilities apply ozone for

optimal disinfection, the following biological filtration would be operating close to optimum.

Owing to the high source-water quality and the multiple disinfection barrier approach,

disinfection was not considered a major criterion in optimizing the operational conditions for

intermediate ozonation in our study. During the pilot study, in 59 % of the ozonated samples,

no bacteria could be detected with the HPC analyses (n=17). Enhanced coagulation, i.e. a

lower NOM level, was expected to improve the disinfection capacity of the following

ozonation, because of a decrease in the rate of ozone decay (Urfer et al. 1999). Figure 8

illustrates the bacterial profile during the treatment (enhanced coagulation) and the effective

destruction of cultivable bacteria in ozonation. This unpublished data was obtained from the

two parallel pilot-WTP runs with ferric chloride sulphate (iron) and aluminium sulphate

(alum) coagulation. A more detailed microbiological study is reported elsewhere (Niemi and

Heiskanen 1997; Niemi et al. 1996, 1998; Heikkilä 1999).
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4.2.2 Improving biodegradation

It is widely accepted that ozonation transforms NOM into a more biodegradable form, thus

increasing the regrowth of bacteria in the distribution system if ozone is applied without

subsequent filtration (Van der Kooij et al. 1989; Miltner et al. 1992; Kruithof et al. 1996). On

the other hand, intermediate ozonation in optimal conditions may enhance the performance of

the following biological filtration by producing a biologically available substrate for bacteria

(Maloney et al. 1985; Sontheimer and Hubele 1987; DeWaters and DiGiano 1990). 

In our study, the transformation of NOM into a more biodegradable form in ozonation was

evidently seen as an increase in AOC and heterotrophic growth response (HGR) of

coagulated and sand-filtered water (I, VII, VIII). Since Aquaspirillum strain NOX, which was

used in the AOC assay, was more suited to utilizing oxygenated organic compounds (like

carboxylic acids) and competes better for the available substrate in simultaneous cultivation

than Pseudomonas fluorescens strain P17, the increase in AOCNOX was more pronounced

than the increase in AOCP17. The increase in AOCNOX was also associated with the increase

in heterotrophic growth response (HGR), which suggests that AOC is related to the potential

of this specific water to maintain the growth of bacteria (VIII). Similar results were obtained

by Miettinen et al. (1998), who found a positive correlation between maximum HPC counts

and AOC in ozonated waters. They suggested that the differences in microbial growth

between the samples could be explained by the changes in the AOC level.

It was expected that optimizing the ozone dose would increase the biodegradation in the

following biological filter and that the transformation of NOM could be optimized using an

AOC assay (Van der Kooij et al. 1989; Miltner et al. 1992; Volk et al. 1993a, 1993b; Paode

et al. 1997). In our first study, it seemed that the maximum AOC formation could be obtained

with an ozone dose of 0.4-0.5 mgO3/mgTOC (I), which was similar to the observation of

Orlandini et al. (1997b), who could not find any further increase in AOC when the ozone

dose was increased from 0.6 to 1.2 mgO3/mgTOC. In our more detailed study, comparing the

effects of operational conditions on AOC formation, the optimum ozone dose was not that

apparent. It was demonstrated that other factors than ozone dose alone were at least equally

important operational variants in NOM transformation (VII, VIII).

The second pilot ozonation study (VII, VIII) confirmed our preliminary experimental results

(I) and the findings of Volk et al. (1993), where a maximum AOC formation was obtained

with a shorter contact time than is normally used for disinfection. The higher AOC formation

was explained by the rapid reactions with ozone through direct and selective action. As the
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contact time is further increased, also part of the biodegradable NOM is mineralized. These

results suggest that a short ozone contact time is favourable in the pretreatment of biological

filtration if the operational criterion is maximum AOC formation.

The effects of ozonation pH and alkalinity are discussed later in Section 4.3.3. 

Despite the massive increase in AOC during ozonation, the biodegradation of persistent

NOM in the following GAC filter did not significantly improve compared to the non-

ozonated GAC filter. The average TOC removal in the exhausted GAC filter increased only

from 6 to 8 %, when ozone was applied (VI). Although most studies indicate enhanced NOM

removal in biofilters following ozonation, similar minor or negligible improvement has been

reported, e.g. by Wilcox et al. (1983), Fiessinger et al. (1983), Järvinen et al. (1990) and

Pietari (1996). Our results suggest that the proportion of AOC in NOM was rather small even

after ozonation, and that most of the NOM was composed of slowly biodegradable or

recalcitrant organic compounds. In order to obtain a more reliable and complete picture of the

changes in biodegradable NOM characteristics in different treatment steps and distribution

system, BDOC analyses should be performed by separating rapidly and slowly biodegradable

fractions during the assay. 

The major parameter that affects the NOM transformation in ozonation is the characteristics

of the influent NOM. As the chemical treatment changes the NOM characteristics, we wanted

to evaluate whether the choice of coagulant has any effect on AOC formation in ozonation.

Although a lower TOC level was achieved with ferric chloride sulphate than with aluminium

sulphate, the AOC formation was not affected (VIII). 

4.2.3 Reduction in reactivity

Ozone destroyed the UV-absorbing sites of NOM molecules, which was seen as a decline in

UVA254. The UV destruction was dependent on the applied ozone dose (I, VIII) being on

average 48 % in the full-scale ozonation. Although ozone did not significantly mineralize

NOM, the reduction in UVA254 does reduce the operation costs of the secondary disinfection;

namely, UV irradiation benefits from the effective NOM removal in the preceding treatment

train. Water that adsorbs a significant amount of UV light will need a higher UV irradiance or

longer exposure time to achieve the same level of inactivation as water with lower UVA254

(Cotton et al. 2001).

As illustrated in Annex II, ozonation alone yielded an average 35 %, 37 % and 76 %

reduction in AOX, SDSAOX and SDSTHM, respectively. Although ozonation transformed



51

the THM and AOX precursors into a less reactive form, ozonation did not decrease either

short-term (4 hours) or long-term chlorine demand (7 days).

In ozonated and GAC-filtered waters, UVA254 seemed to be a slightly better surrogate for

predicting DBP formation than TOC (II). Similarly, Najm et al. (1994) showed that UVA254

is a better indicator for SDSTHM formation than TOC in chemically coagulated waters. On

the other hand, Bell-Ajy et al. (2000) recently stated that in coagulation studies TOC would

be a better surrogate for DBP precursor removal than UVA254. Clearly, the prediction of DBP

formation depends on the given process and NOM type. If the DBP formation is critical for

the process design, the formation potential should not be estimated with surrogates only.

4.2.4 Decrease in molecular size

Although the average decomposition of TOC varied between 2 to 7 % depending on the pH

and applied ozone dose (VIII), ozonation shifted the molecular size distribution slightly

towards the smaller molecules (V, VI). However, the observed increase in the smallest

molecular fraction was minimal compared to the increase in AOC. 

In the studied water, the relative proportion of AOC in NOM was generally small, although it

might seem high if only the AOC/TOC ratio is considered. However, it must be noted that

AOC is not an absolute measure, but rather an indirect measure of biologically available

energy that the NOM contain in water (Zhang and Huck 1996). Merely for convenience, the

energy is expressed as acetate and oxalate carbon equivalents. If the decrease in AOC in

exhausted GAC filters (or in the distribution system as shown later in 5.1) is compared to the

corresponding TOC removal, the proportion seems much smaller.

It seems that, depending on the water characteristics, the relative amount of rapidly and

slowly biodegradable NOM in different molecular fractions varies. LeChevallier (1999)

ultrafiltered Mississippi River water samples and found AOC from both the filtrate and

retentate, but in Putnam reservoir water the retentate practically did not contain any AOC.

Merlet et al. (1991) suggest that the BDOC is composed of all sizes of molecules. Volk et al.

(2000) found that the AOC was mainly composed of small molecules, while BDOC included

larger molecules. Our HPSEC study could not relate the changes in AOC to the certain

molecular fraction of  NOM (V). This may have been a result of the inability of the size

exclusion chromatography to detect the smallest fraction of NOM (Nissinen et al. 2001), or

that the AOC is not formed from the smallest molecules only. Rather than simply saying that

AOC is formed of small molecules, it seems that the complex and varying mixture of NOM
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macromolecules has sites in all sizes, which are more amenable to biodegradation than the

other parts of different nature.

4.2.5 Effect on adsorbability

Several studies suggest that low molecular weight fractions of NOM are more adsorbable

than larger, heavier fractions (Lee et al. 1981; Ødegaard et al. 1986; Semmens and Staples

1986; Sontheimer et al. 1988). In addition, in our study the adsorption of large molecules was

slightly slower than with smaller ones (V). This effect is generally attributed to the inability

of high-molecular weight compounds to enter the smaller GAC pores (McCreary and

Snoeyink 1980). On the other hand, ozonation transforms NOM to more polar and

hydrophilic, which result in a decrease in adsorbability of NOM in GAC filtration (Delaat et

al. 1991; Orlandini et al. 1997a). Thus, the net effect of ozone on adsorbability may be either

positive or negative. In our study, the slower adsorption kinetics of the ozonated NOM was

seen in the lower amount of TOC that was adsorbed onto the GAC media in the ozonated run

compared to the non-ozonated run (Table 2, VI).

4.2.6 Conclusions

After installing GAC, ozonation has a new role in the treatment process. When GAC is

expected to improve the organoleptic quality of water and to reduce NOM that serves as DBP

precursors, the justification of the ozone process is not a matter of course. Furthermore, if an

effective disinfection barrier, such as UV irradiation, is introduced after GAC filtration, the

operational criteria for the ozone process can be reconsidered. 

Optimizing the operational conditions in intermediate ozonation increases the biodegradation

rate in the following exhausted GAC filters. In our study, a short ozone contact time was

sufficient for NOM transformation into a more biodegradable and less aromatic form, which

provided the highest AOC values and probably the highest biological activity in the following

exhausted GAC filters. On the other hand, ozonation reduced the adsorbability of NOM,

which was not compensated by the minor increase in biodegradation of NOM.

If the objective is to minimize the release of AOC into the distribution system, this would

result in ozone not being applied at all, because the effluent AOC in the non-ozonated run

was higher than the effluent AOC in all the other runs. If the objective is the maximum

formation of AOC in ozonation, this would result in short ozone contact time in a

concentration normally used for primary disinfection. High influent AOC is followed by a

maximum NOM degradation rate in GAC media, but also by higher effluent AOC level.
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Since little is known about the characteristics of the remaining biodegradable NOM, the role

of other nutrients and the possible risks of inadequate disinfection prior to GAC media,

further studies should be conducted before the ozone contact time can be reduced from those

normally used for disinfection.

4.3 Alkalinity and pH control

4.3.1 Coagulation

Controlling pH during the treatment process is needed to obtain optimal coagulation,

ozonation, adsorption and chlorination conditions. Before the water is pumped into the

distribution system, corrosion control is needed. A part of corrosion control in Helsinki Water

is pH adjustment with carbon dioxide and lime addition. Alkalinity and pH also play a major

role in optimal NOM and particle removal during coagulation. Sometimes, adding

supplemental hydroxide ions and calcium from lime may be needed in low alkalinity cold

waters to achieve optimal coagulation and flocculation conditions. 

As discussed earlier, more efficient NOM removal in coagulation may be achieved by using

ferric chloride sulphate. As an added benefit, calsium loading onto following GAC filter bed

will be reduced (Frederick and Cannon 2001). The optimal coagulation pH for iron is lower

than for alum and may be achieved without acid dosing in low alkalinity waters. This gives

an opportunity for the WTPs, which normally involve lime addition before coagulation: the

dosing point may be postponed to the later phase in the treatment train. However, careful

consideration must be given to whether the changes in chloride-to-sulphate ratio affect the

corrosivity of water. 

4.3.2 Sand filtration

As summarized by the AWWA expert workshop (Carlson et al. 2000), the changes in

flocculation conditions, such as pH, can affect the floc density and integrity by making it less

dense and more fragile. This may result in floc carryover from the sedimentation basin to the

sand-filters, which in turn results in shorter filter runs or premature filter breakthrough. In

some Finnish WTPs, the pH is increased before sand filtration by adding lime in order to

improve manganese removal efficiency (Wahlroos 1991). However, a change in pH can

increase particle breakthrough as well as alum or iron carryover. Although we did not study

the optimization of sand filtration, the evaluation of possible benefits and disadvantages of
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pH increase and optimum backwashing strategy could help optimize particle and soluble

metal removal prior to ozone and GAC.

4.3.3 Ozonation

A reduction in pH reduces the ozone decay rate by decreasing the formation of hydroxyl

radicals that can initiate the self-decomposition process (Langlais et al. 1991). This reduction

results in a lower ozone dose required to achieve equivalent disinfection efficiency. On the

other hand, bicarbonates and carbonates act as scavengers of the highly reactive hydroxyl

radicals, and thus the increased alkalinity also has a stabilizing effect on molecular ozone.

The destruction of DBP precursors is generally more effective at lower pH, but poorer

performance in taste and odour control may be expected (Langlais et al. 1991). 

In our study, the variation in ozonation pH and alkalinity in the studied range did not show

any changes in NOM transformation (I, VII, VIII). The effect of alkalinity on AOC formation

was studied by the addition of sodium bicarbonate into chemically pretreated (ferric chloride

sulphate) and sand-filtered water (VIII). Increasing the alkalinity from 32 to 152 mgCaCO3

did not affect AOC formation, nor did any other parameter show differences in the NOM

reaction pathway. However, as expected, a lower ozone decomposition at lower pH was

observed. 

The results of other similar studies are somewhat confounding. Zoungrana et al. (1998)

observed more intense formation of BDOC when the alkalinity was increased from 25 to 100

and finally to 250 mgCaCO3/l. On the other hand, Paode et al. (1997) observed that the

formation of AOCNOX in ozonation increased as alkalinity decreased, but AOCP17 was not

affected suggesting that a free radical mechanism may be more strongly influencing the

formation of AOC. Higher UVA254 reductions have been observed at higher alkalinity

(Legube et al. 1985; Paillard et al. 1989; Zoungrana et al. 1998). On the other hand, in high

alkalinity waters (144 mgCaCO3), a further increase in alkalinity did not increase UVA254

reduction in ozonation (Andrews and Huck 1994). Finally, Nawrocki and Kalkowska (1998)

observed no differences in aldehyde formation with sodium bicarbonate addition before

ozonation.

If the NOM transformation is affected by the ozone reaction pathway, as suggested by

Legube et al. (1985), Paillard et al. (1989) and Zoungrana et al. (1998), adding bicarbonates

or lowering pH should have further stabilized ozone. The results shown in Annex VIII

indicate that ozone did primarily react through a molecular pathway and thus the increase in
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radical scavengers did not have any influence on the ozone reaction kinetics and NOM

transformation. Although in our other study the addition of hydrogen peroxide after five

minutes’ ozone contact time did not show any changes in NOM transformation (Bicelli

1997), it would be interesting to establish the possible benefits of promoting rapid ozone

decomposition through radical pathway. Recently, Speitel et al. (2000) found neither an

improvement nor an inhibition in BDOC formation, when hydrogen peroxide was used

together with ozone.

4.3.4 Biological filtration

In the studies of Moll and Summers (1999), varying the source water pH did not affect

biomass concentration or the removal of NOM in biological filtration, but it did slightly

change the microbial community structure. They suggested that enhanced coagulation

followed by biological filtration at lower pH would have little impact on biofilter

performance. In our study the filtration pH was always above 6.5 and thus effects of lower

pH on biological activity were not assessed. 

4.3.5 Adsorption

Decreasing pH generally improves NOM removal in GAC adsorption (McCreary and

Snoeyink 1980; Weber et al. 1983). Semmens et al. (1986) found that an increase in the

service life of the GAC adsorber was 2- to 4-fold depending on the target effluent value of

TOC when the pH was decreased from 8.7 to 5.0. Nowack et al. (1999) found only a slight

increase in service life when the pH was decreased from 7.1 to 6.0. Some of their

explanations for the increased NOM adsorption capacity at lower pH were changes in the

carbon surface charge and the degree of NOM dissociation. They suggested that it might be

economically beneficial even to consider pH reduction prior to GAC adsorption.

In our study, the pH effect was not intentionally studied at the pilot plant. However, the effect

can be seen from the breakthrough curves in Annex V, where the adsorption capacity of

ozonated runs rapidly declines after 220 days. At that time, the influent pH was increased

from 6.6 to 7.4. This indicates that at Helsinki Water’s WTPs the pH reduction could increase

the adsorption capacity of GAC adsorbers. The low adsorption pH is easily achieved by

postponing the lime addition to the end of the treatment train.

It must be noted that the lime addition in re-alkalization may accumulate calcium in the GAC

filter bed. Interestingly, it has been reported that the presence of calcium ions in solution

substantially increases the adsorption capacity of GAC for humic substances (Weber et al.
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1983) and fulvic acids (Randte and Jepsen 1982), which are both typical representatives of

NOM. However, calcium present in the pore structure of GAC can accelerate the destruction

of micropores during thermal regeneration (Cannon et al. 1993). If lime is added prior to

GAC filtration, the utility may need to monitor the calcium build-up in the GAC filters. 

4.3.6 Conclusions

Implementing GAC filtration together with enhanced coagulation using ferric chloride

sulphate in the treatment train gives an opportunity for the utility to postpone the pH

adjustment until the final stage, where corrosion control is performed. Before a lower pH is

introduced step-by-step, careful attention must be paid to the expected changes in the

treatment parameters, such as water corrosivity, soluble metals removal and metal

accumulation onto GAC bed.

4.4 Ultraviolet irradiation and chloramination

4.4.1 Disinfection by-product control

One factor determining the extent of DBP formation is the chlorine dose required to achieve

effective disinfection and to maintain chlorine residual in the distribution system. In order to

assess the effect of ozonation and two-step GAC filtration on the required chlorine dose, we

studied the chlorine decay kinetics. As shown in Annex II, two-step GAC filtration

significantly reduced the short-term (4h) and long-term (7d) chlorine demand. Similarly,

others have observed that biologically treated water had a lower chlorine demand than water

that was ozonated alone (Bablon et al. 1988; Ventresque et al. 1990; Prévost et al. 1991;

Cipparone et al. 1997). Cipparone et al. (1997) suggested that the chlorine demand is related

to the TOC concentration in the water. However, we observed that the chlorine demand was

less affected by the age of the GAC filter than the reduction in NOM (II), which suggests that

GAC preferentially removes compounds susceptible to reactions with chlorine, such as amino

acids (Prévost et al. 1998a). In practical applications, the required chlorine dose for the

equivalent residual seems to be significantly lower, when GAC filtration is applied after

ozonation. Accordingly, a lower disinfectant dose results in the lower DBP formation during

treatment and in the distribution system.

Besides decreasing chlorine demand, the exhausted GAC filter contributed to a minor

reduction in SDSTHM and SDSAOX (II). In the adsorptive phase, the removal was strongly

dependent on the GAC age (II). Since the SDS tests were performed with a low chlorine dose
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(0.6 mg/l) and short chlorine contact time before ammonia addition (30 minutes), the

measured AOX and THM values in all the samples were extremely low. Even in the

experiments without ammonia addition, the THM levels remained well below the European

drinking water standard of 100 µg/l (98/83/EY). Thus, it is expected that, regardless of the

selected the chlorination practice, after installation of GAC filtration, the THM formation rate

will meet the goals set for the protection of public health.

4.4.2 Disinfection of the filter effluent

Biological filtration takes advantage of the bacteria that colonize the filter media. Thus, it

also provides opportunities for the growth of indicator organisms and opportunistic

pathogens. Some of them may be more resistant to disinfection, and GAC fines released from

the filter media provide additional protection against disinfectant. The accumulation of

pathogens poses a risk for public health, unless the biological filtration is followed by

adequate disinfection, which eliminates the bacteria released from the filter media (Bouwer

and Crowe 1988). Effective disinfection can be provided by UV irradiation or using relatively

high doses of chlorine. UV disinfection seems to be a fascinating alternative, since even at

low doses it provides high inactivation levels of the bacteria, viruses and protozoa being

almost independent of the water pH and temperature (Parrotta and Bekdash 1998; Clancy et

al. 1998; Bukhari et al. 1999; Craik et al. 2001; Modifi et al. 2001). Furthermore, the

formation of known DBPs is minimal compared to other disinfectants. However, turbidity

and TSS can inhibit UV inactivation by shielding the micro-organisms from the UV light.

Little is known about the effectiveness of UV irradiation against the bacteria sheltered inside

the GAC fines.

In our study with the pilot water main, the HPC of the GAC-filtered and UV-disinfected

water was zero in 29 % of the samples (data not shown). In an other study, a pilot UV

irradiation unit provided a 2-log reduction in HPC of the GAC effluent (Figure 8). Although,

the effectiveness of UV irradiation has been addressed elsewhere in more detail (Niemi et al.

1998), it seems obvious that the effectiveness of secondary disinfection is largely dependent

on the extent of particle release from the GAC media. 

Although UV irradiation is expected to effectively disinfect water and contribute to a minor

or negligible increase in biodegradable NOM (Shaw et al. 2000), we observed that the

combination of UV disinfection, pH adjustment and chloramination contributed to a 41 %

increase in AOCNOX, but the AOCP17 was not significantly affected. In two-step GAC filter
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effluent (I) the AOCP17 and AOCNOX averaged (± standard deviation) 46±33 �g-C/l and

99±14 �g-C/l, respectively. In the four samples taken at the same time (29.1, 25.3, 13.5, 9.9)

from UV-disinfected, pH-adjusted and chloraminated water, the AOCP17 and AOCNOX

averaged 39±25 �g-C/l and 140±16 �g-C/l, respectively (III). Thus, it is possible that the

regrowth of heterotrophic bacteria in UV-disinfected and chloraminated water is slightly

higher than in the chloraminated water alone.

4.4.3 Conclusions

Introducing GAC filtration after ozonation provides additional removal of DBP precursors

and decreases the chlorine demand required for the equivalent disinfection efficiency. The

removal efficiency is limited with the exhausted GAC, and thus the DBP formation can be

controlled by shortening the GAC service time. However, if chloramination is practiced i.e.

the DBP formation is retarded by a ammonia addition, the resulting DBP levels in the studied

treatment process remain well below the guidelines. 

Effective disinfection is necessary to prevent the escape of harmful bacteria from the GAC

media into the finished water. If low doses of free chlorine or chloramines were normally

applied as a secondary disinfectant, UV irradiation would provide an additional barrier

against the micro-organisms of health concern. However, little is known about the

effectiveness of UV irradiation against bacteria sheltered inside the carbon fines. More

research is needed also to determine the impacts of UV irradiation on the bacterial regrowth

in the distribution system.
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5 WATER QUALITY CHANGES IN THE DISTRIBUTION SYSTEM

5.1 Proliferation of heterotrophic bacteria and AOC degradation rate
The biofilm accumulation in drinking water systems is stimulated by the biodegradable

compounds present in drinking water or dissolved from the construction materials of the

piping system. These compounds serve as a source of nutrients and energy for the growth of

bacteria. If the nutrients are effectively removed in the treatment train, it is expected that the

biofilm formation in the pipe walls be reduced and the increase in the HPC with respect to

residence time be limited. It has been shown that extremely low concentrations of

biodegradable compounds can maintain biofilm activity in the distribution system (Sibille et

al. 1997, 1998; Van der Kooij et al. 1995, 1999). However, in many cases other factors, such

as water temperature, disinfectant type and residuals, corrosion control, hydraulic conditions

and selection of pipe material may be more important factors in maintaining biofilm activity

(Volk and LeChevallier 1999). Especially, unlined ferrous metal pipes and its corrosion

products in the distribution system dramatically influence the composition, activity and

disinfection resistance of biofilm bacteria (Norton and LeChevallier 2000, Butterfield et al.

2002). 

In Section 3.2.2, it was demonstrated that two-step GAC filtration efficiently decreased AOC

in ozonated water, which was seen as low levels of AOC entering the simulated water main

(I, III). In the simulated water main, a significant decrease in AOC degradation rate and HPC

was achieved when two-step GAC filtration and UV disinfection were employed, suggesting

that GAC filtration increases the biological stability of distributed water (III). A decrease in

biodegradable NOM degradation rate in the distribution system has been attributed to the

degree of biological stability of drinking water in other studies, too (LeChevallier et al. 1987,

1991; Van der Kooij 1990, 1992; Laurent et al. 1993; Gatel et al. 1995; Miettinen et al.

1997). However, TOC was not sensitive enough to detect the decreased NOM degradation

rate. No significant differences due to GAC filtration and  UV disinfection were detected for

decreases in TOC in the simulated water main. It is probable that increasing the residence

time in the water main would have increased the TOC degradation. Nissinen et al. (2002)

took samples from the full-scale distribution system (10 km from waterworks) and observed a

0.2 - 0.3 mgTOC/l reduction. This is twice as high as observed in pilot water main with

similar post-ozonated water (III). These results indicate that the biodegradable proportion of 
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NOM is rather small and persistent in its nature. It remains questionable whether BDOC

analyses could have shown any changes in the distribution system.

The measurement of AOC is based on the general observation that in most waters, carbon

limits the growth of heterotrophic bacteria. However, a few authors have shown that in some

waters, phosphorus may be a minimum factor for growth (Miettinen et al. 1997b; Sathasivan

et al. 1997). Since all our samples analyzed for AOC were supplemented with phosphorus

and other inorganic nutrients, this study did not address the issue of whether phosphorus was

the limiting nutrient, but the AOC described only the effect of bio-available carbon on the

potential growth of Ps. fluorescens strain P-17 and Spirillum strain NOX pure cultures.

Interestingly, Miettinen et al. (1997a, 1997b) observed that the AOC in distributed water did

not correlate with HPC and that the addition of phosphorus to a finished water sample of

Pitkäkoski WTP increased bacterial growth. The nutrient limitation has already been

discussed in Section 3.2.6, and our results are clearly not conclusive. It is possible that both

the decrease in microbially available phosphorus and organic carbon resulted in the decreased

HPC in the distribution system. It is also possible that the turnover rate of phosphorus is

much higher than the biodegradation rate of carbon-containing substrates and thus

phosphorus has a limited role in the biofilms of the distribution system. Also, it must be noted

that an efficient corrosion control program will result in increased disinfection efficacy and

lower biofilm densities (Abernathy and Camper 1998; Appenzeller et al. 2001). Therefore, it

is possible even in the phosphorus-limited distribution systems, that corrosion control with

phophate addition would result in lower biofilm densities.

Because of the complexities inherent of distribution systems, water quality models are

essential tools needed to describe fundamental processes. The more recently developed multi-

species models describe water quality reactions using sets of interdependent mass-balance

equations capable of tracking multiple species. The first multi-species model designed for

drinking water system is the SANCHO model (Servais et al. 1995). It contains mass-balance

equations describing microbial synthesis, biodegradable NOM utilisation, chlorine reactivity

with NOM and disinfection processes. It calculates the biomass concentrations in the water

phase and attached to pipe surfaces, but is limited to the analyses of straight pipes of

decreasing diameter. Recently, SANCHO was applied to full-scale distribution systems

(Laurent et al. 1997). Other multi-species models are described in Dukan et al. (1996) and

Piriou et al. (1998). In the future studies, fundamental processes should be examined at the
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laboratory and distribution system scale using multi-species models as a tool for developing

water quality improvement plans.

5.2 Decay of monochloramine
The decay of chloramine in distribution system can be attributed to the reactions of

chloramine with organic matter, biofilm and construction material. Several recent studies

have highlighted the importance of maintaining a disinfectant residual in the distribution

system (Escobar et al. 2001; Zhang and DiGiano 2002; Butterfield et al. 2002) It seems that

in most cases the presence of disinfectant residual is the most effective measure in

minimising biofilm development and HPC levels. Prévost et al. (1998b) suggests that in cold

waters, maintaining a high concentration of disinfectant residual may be sufficient alone to

compensate higher concentration of biodegradable compounds.

Based on the laboratory tests, where the reduction of long-term chlorine demand (seven days,

Cl2:TOC = 2:1) was about 30 % in two-step GAC filtration (II), it was expected that

introducing GAC would decrease the chloramine decay in the distribution system. The

simulated distribution system study showed similar results: GAC filtration slightly increased

the stability of chloramine in the simulated water main (III). Thus, the equivalent chloramine

residual can be achieved in the consumer tap by applying a lower chloramine dose. These

results conflict with the observations of Volk and LeChevallier (1999), who observed in

annular rectors that biological filtration had little effect on chloramine consumption, although

it improved the stability of free chlorine.  

5.3 Incomplete nitrification
The use of chloramines in the secondary disinfection may result in the regrowth of ammonia-

oxidizing bacteria (AOB) in the distribution systems.  AOB obtain the energy for their

growth from the oxidation of ammonia to nitrite, which is available from the decay of

chloramine. The nitrite may exert to increased chloramine demand thus releasing more

ammonia. This may allow the rapid destruction of disinfectant residual and possible pathogen

accumulation in the distribution system (Valentine 1985). In addition, AOB may enhance the

growth of heterotrophs by the production of biodegradable soluble microbial products

(Watson et al. 1981, Regan et al. 2002). It has been estimated that, in the United States, two-

thirds of medium and large chloraminating utilities experience nitrification (Wilczak et al.

1996). Lately, it has been demonstrated that the AOB are widely present in the deposits of the

Finnish drinking water distribution systems (Lipponen et al. 2002). Recommended
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approaches to prevent and control nitrification include decreasing detention time, increasing

the pH, decreasing the temperature, decreasing TOC concentrations, increasing chloramine

residual, increasing chlorine-to-ammonia ratio and decreasing the excess ammonia

concentration. Recently, it has been shown that maintaining the finished water pH at 9.3

(Skadsen 2002) and the addition of chlorite to the treatment plant effluent (McGuire et al.

1999) have a significant potential for controlling nitrification. However, both techniques have

serious drawbacks, which need to be carefully considered, but are not discussed here.

In our study, GAC filtration contributed to increased bacterial nitrification in the simulated

water main (III). After a three-month acclimatization period, AOB started to convert

ammonia to nitrites more intensively. The decreased nitrite concentration towards the end of

the water main together with increased nitrate concentrations indicates that nitrite was further

converted to nitrate. Interestingly, the oxidizing of nitrite to nitrate occurred during the

normal residence time in a large distribution system.

Nitrification occurred despite the constant low water temperature (7-9 oC). Generally, a high

temperature and long residence time favour the proliferation of slowly growing nitrifying

bacteria (Larson 1939; Ike et al. 1988; Wolfe et al. 1988; Lieu et al. 1993), although

nitrification episodes in temperature conditions below 15 oC have also been reported (Wolfe

et al. 1990; Cunliffe 1991; Odell et al. 1996; Pintar and Slawson 2002).  The results obtained

confirm that nitrification episodes may occur even under cold water conditions in the

decreased water flow sections. 

After installing full-scale GAC filtration at Vanhakaupunki WTP the nitrite levels started to

increase in its distribution system, too. Statistical analysis demonstrated that, after three

months of operation, nitrite levels were significantly higher than in the previous years

(Vahala and Laukkanen 1998). At the same time in Pitkäkoski WTP distribution system,

which was supplied with postozonated water, the nitrite levels did not differ significantly

from the previous years.

The mechanism contributing to increased nitrification after GAC filtration needs further

investigation. Previously, Skadsen (1993) observed that GAC contributed to nitrification in

the Ann Arbor Plant. However, they supplied the GAC filter with excess ammonia in

prechloraminated water, thus enabling nitrifying bacteria to proliferate already in the GAC

filters. On the other hand, Odell et al. (1996) proposed that removing NOM in the treatment

plant could control nitrification. Conversely, Strauss and Lamberti (2000) observed that

organic carbon addition decreased the nitrification rate but increased total microbial activity
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in the stream sediment. In our study, exhausted GAC did not remove NOM efficiently and

probably the low difference in TOC between the mains had no significant influence on

nitrification. Rather, decreased competition between nitrifying and heterotrophic bacteria for

space, slightly lower pH (optimal growth conditions for AOB varies between 7.2-8.5), the

introduction of a shelter inside the carbon fines and a slightly higher excess ammonia

concentration (lower chlorine-to-ammonia ratio) may have caused a higher proliferation of

nitrifying bacteria in the GAC-filtered water main. It appears that the GAC filtration shifted

the increase in heterotrophic bacteria to the treatment plant and thus reduced the interference

for the growth of autotrophic nitrifying bacteria in the water main. In a bench-scale study,

Pintar and Slawson (2002) could not observe any specific relationship between heterotrophs

and AOB, but noted that the competition for space may affect the growth opportunities of

these organisms. This was observed in the ammonia-seeded BAC column, where the nitrifiers

increased as the heterotrophs decreased (Pintar 2002).

Recently, the role of protozoa as a predator in controlling biomass growth and accumulation

in the distribution system has been discussed. Sibille et al. (1998) observed in pilot-scale pipe

loops that E.coli was lost from GAC-filtered water more rapidly than from the nanofiltered

water perhaps because of the grazing activity. The role of protozoa in AOB accumulation

needs further research. 

The increases in nitrite and nitrate together with the consumption of ammonia indicated the

occurrence of nitrification in a simulated water main. In addition to increased oxidized

nitrogen concentrations, nitrification has been associated with increased HPC, the accelerated

decay of chloramines and decreased pH, alkalinity and DO concentration (Feben 1935;

Larson 1939; Hill 1946; Ike et al. 1988; Odell et al. 1996). However, in our study the non-

specific measurements such as pH, alkalinity and DO proved unsatisfactory for detection of

the nitrification. For example, in post-ozonated water main the average DO concentration

decreased from 13.2 mg/l to 11.8 mg/l during the residence time, while in GAC-filtered water

main the average DO concentration decreased from 12.2 mg/l to 10.7 mg/l, respectively. On

the other hand, the use of HPC as an indicator in this study failed as GAC filtration decreased

the HPC by removing nutrients for the growth of heterotrophic bacteria. Furthermore, in the

presence of low disinfectant residues in the distribution main, the accelerated decay of

chloramines was not observed.
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5.4 Conclusions
The application of ammonia in chloramination to provide more persistent chlorine residual

and to control the production of DBPs stimulates nitrification in the distribution system. It

was expected that the presence of nitrites would decrease the chloramine residual and thus

increase the heterotrophic bacterial population in the distribution system. The most

interesting finding in our study was that, in GAC-filtered and UV-irradiated water, the

nitrification effect seemed to be more pronounced. In this water, the increased growth of

nitrifying autotrophs can be explained by the fact that they compete with heterotrophs for

biofilm space. Owing to their higher growth rate and lower sensitivity to shear forces,

heterotrophs generally win the competition resulting in minimal nitrification. The

competition was probably not for the dissolved oxygen as it was present in excess in the

aqueous phase. 

Although the removal of nutrients alone does not inhibit the biofilm growth, introducing

GAC filtration into the treatment scheme transfers most of the AOC reduction from the

distribution system into the treatment plant, where biological processes are better controlled.

In contrast to the published literature, we could not observe that the growth and metabolism

of autotrophs would significantly stimulate the growth of heterotrophic biomass by forming

organic products. Neither could be observe any decrease in chloramine concentration owing

to nitrification, which could have been due to low chloramine levels in our study. Rather, the

removal of reactive NOM species aided in the maintenance of chloramine residual and

increased the availability of chloramines to inhibit the biofilm development in the system.

However, it can be expected that by minimizing the nitrification, the growth of heterotrophic

bacteria is further reduced. More research is needed to determine the interactions between

heterotrophs, autotrophs, protozoa and NOM in the proliferation of nitrifying bacteria.
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6 FUTURE OPTIONS

6.1 Process alternatives
This chapter discusses the different approaches in the development of Helsinki Water’s

treatment processes. Since the number of possible process combinations is almost unlimited,

only the following viable alternatives are selected for the discussion (Table 7):

0. Conventional treatment + ozone alone (existing process before modification)

1. Conventional treatment + ozone + exhausted GAC + UV irradiation

2. Conventional treatment + ozone + adsorptive GAC + UV irradiation

3. Conventional treatment + ozone + two-step GAC + UV irradiation (selected
process combination)

4. Conventional treatment + adsorptive GAC + UV irradiation

5. Conventional treatment + UV irradiation

Table 7. Summary of benefits and adverse effects of selected process combinations after

conventional treatment (O3 = ozonation, GAC = adsorption, BAC = exhausted

GAC).
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AOC in finished water >> 0 0 0 < <<

Heterotrophic regrowth in distribution system >> < < < n.a. n.a.

Nitrification in distribution system > >> >> >> n.a. n.a.

AOX in finished water < < << << < 0

THMs in finished water << << << << < 0

Decay of chloramines in distribution system < << << << << <

Disinfection efficiency > >> >> >> > >

Risk of pathogen intrusion << < < < 0 <<

Taste and odour in finished water << << << << << 0
<< very low, < low, 0 moderate, > high, >> very high, n.a. not analysed
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Every treatment alternative is followed by corrosion control and secondary disinfection. In

corrosion control, lime and carbon dioxide are added to provide optimal pH and alkalinity. A

low dose of monochloramine (< 1 mg/l) is used for secondary disinfection to provide a more

persistent chlorine residual and to control the production of DBPs in the finished water.

Conventional treatment consists of coagulation, flocculation, sedimentation and sand-

filtration with the necessary pH adjustment to obtain optimal operation conditions.

6.2 Existing treatment process
During the study ozonated water was supplied into the distribution system without

subsequent filtration. As indicated earlier, the driving force for the interest in GAC was the

deterioration of postozonated water quality in the distribution system, especially in Helsinki

city centre, where the use of water has decreased. The deterioration of water quality was seen

as an increased biofilm formation and harmful deposits, which increased the replacement rate

of water meters.

It is well known that ozonation increases the biodegradable portion of NOM and thus

increases the regrowth of bacteria in the distribution system. Nowadays, it is widely accepted

that ozonation should always be followed by a filtration step. However, conventional

treatment followed by ozonation alone is effective in improving the organoleptic quality and

transforming DBP precursors into a less harmful form. Furthermore, it provides effective

disinfection barrier against bacteria, viruses and protozoa.

6.3 Ozone followed by biological filtration
When exhausted GAC is used for the biological stabilization of drinking water it is often

referred to as biological activated filtration. However, in this thesis, this term is intentionally

not used, because the biological activity had a limited role in a process with low temperature

and low influent flux of nutrients. Despite extreme conditions for GAC performance, the

AOC was significantly reduced in the exhausted GAC filter. Although the relationship

between decreased AOC and decreased HPC in the simulated distribution main is not

conclusive, it can be concluded that exhausted GAC decreased the regrowth of heterotrophic

bacteria in the distribution system. Although, the average AOC reduction in the exhausted

GAC filter was more than 50 % of AOC, the water was not biologically stable and needed a

disinfectant residual to limit bacterial growth.

Exhausted GAC contributed to increased nitrification in the distribution system. In

nitrification, AOB may produce soluble microbial products, which increase the growth of
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heterotrophs. Thus, the benefit from introducing GAC is partly lost, if nitrification cannot be

controlled. One key factor that may affect the nitrification occurrence is the release of GAC

fines, which needs further investigation. Although the low nitrite levels is not an issue of

public health protection, the factors that contribute to increased AOB proliferation need to be

established.

Exhausted GAC does not significantly decrease the DBP precursors from ozonated water.

However, it does decrease the chloramine decay rate and thus decreases the dose needed for

the same residual.

Although ozone is a powerful oxidant, an effective disinfection after GAC provides

additional safety. The efficiency of UV irradiation against micro-organisms sheltered inside

the GAC fines is poorly known and therefore the theoretical risk of pathogen intrusion exists.

Both the ozone and GAC improve the organoleptic quality of water and the high level of

customer satisfaction can be achieved unless a large amount of GAC fines reach the customer

tap.

6.4 Ozone followed by adsorptive filtration
Compared to exhausted GAC, fresh GAC efficiently removes NOM, i.e. DBP precursors.

The efficiency of adsorptive filters is strongly dependant on the selected GAC type and

regeneration frequency. Fresh GAC efficiently removes TOC, UVA254, chlorine demand

and DBP precursors, but the rapid deterioration of adsorptive capacity takes place soon after

the installation. Since the adverse effects of NOM in a distribution system are rather difficult

to assess, an arbitrary operation criterion is often set for the utility. However, the high

regeneration cost of GAC would justify more accurate research on the expected adverse

effects. 

Except for the better performance in NOM removal, the adsorptive GAC has limited

advantages over exhausted GAC. Fresh GAC provides an additional barrier against accidental

pollution and rapid changes in influent quality, but on the other hand, it may release more

GAC fines into the finished water than exhausted GAC.

6.5 Selected process modification
This thesis studied the ozonated two-step GAC process, where optimal process performance

for NOM removal was expected. In contrast to the published literature, the first step filter

with exhausted GAC did not extend the bed life of the following adsorber when the first-step

GAC filter was operated with fully exhausted GAC. If shorter regeneration frequency were
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applied, also the first step GAC filter would have some adsorption capacity left, and the

concept of two sequential filters would probably decrease the GAC usage rate. 

Despite the long contact time in two sequential GAC filters, the AOC in the effluent

remained higher than before ozonation. From the standpoint of efficient AOC removal, the

long EBCT in the GAC filtration cannot be justified. However, it is possible that slowly

biodegradable NOM necessitates a longer contact time. Unfortunately, this was not studied

and therefore no conclusive recommendations about the optimal EBCT can be given.

However, the latest research and constructed GAC applications seem to favour a short contact

time of less than 10 minutes.

6.6 Switching off the ozonation
The use of ozonation in water treatment must be judged as a trade-off between its beneficial

effects and its potential adverse effects. In the history of Helsinki Water’s treatment

processes, ozone was first used for primary disinfection and for improving organoleptic

quality. The raw water quality has gradually improved, and nowadays ozone is mainly used

for primary disinfection.

When UV irradiation was introduced in the existing treatment train, effective disinfection

was provided against bacteria, viruses and protozoa. Therefore, the role of ozone can be

reconsidered. However, at the same time, the supporter of biological activity, namely GAC,

was introduced. Preceding ozonation provides a barrier against the colonization of filter

media with micro-organisms of public health concern. Although conventional treatment

effectively reduces the micro-organisms from the raw water, it is possible, although unlikely,

that a GAC filter would colonize opportunistic pathogens. If the pathogens are attached to the

surface of GAC fines and released into the finished water, it is possible that UV light cannot

deactivate them and thus they pose a risk for public health.

When GAC follows conventional treatment without intermediate ozonation, the biological

activity in the GAC media is not intentionally encouraged, although it always exists. In a

non-ozonated GAC filter, NOM is as efficiently removed as in ozonated filter media, but the

AOC is slightly increased. The impact of increased AOC on the HPC in the distribution

system was not studied, but it could be expected that the regrowth of heterotrophs is at least

smaller than in postozonated water. 

If the ozone is switched off, the total decrease in DBP precursors and UVA254 in the GAC is

smaller than with the combination of ozone and GAC. When chloramines are applied, the
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DBP formation is relatively low in all the process alternatives. However, the higher UVA254

increases the UV dose needed for the equivalent disinfection efficiency. The chlorine demand

tests suggested that the chloramine decay rate in the distribution system is not affected.

6.7 Replacing ozone with UV irradiation
Changing the primary disinfectant provides a low-cost alternative to the previously discussed

process modifications. Although, chloramination was considered as a matter of course in the

secondary disinfection, the primary disinfection can be performed effectively with UV

irradiation alone. After conventional treatment alone, all the parameters remain below the

drinking water standards, and it would be possible to deliver water without ozone and GAC

treatment. However, this approach reduces the multiple barriers in the treatment and thus the

risk of customer complaints increases and the level of public health protection decreases.

6.8 Closing words
Helsinki Water has upgraded its treatment process by introducing two-step GAC filtration

and UV disinfection after conventional treatment and ozonation. This process configuration

provides additional barriers against unexpected conditions. An example of such a situation is

the change in raw water source, which took place during autumn 2001, when the 120 km-

long raw water tunnel from Lake Päijänne was under rehabilitation for four months. During

this time, raw water was taken from River Vantaa, which has higher turbidity, NOM

concentration and coliforms counts. In such circumstances, the additional barriers in the

treatment train can guarantee customer satisfaction, although in a normal situation good water

quality could be achieved with a conventional treatment process. 

The decision of upgrading the treatment process is always partly political, and it depends on

the willingness to pay for the extra safety and comfort. In recent years, the deterioration of

water quality in distribution systems has gained more interest among water professionals.

Partly this is because of the ageing infrastructure, but also owing to efficient new treatment

methods, such as nanofiltration, which produce ultrapure water. It would be interesting to

know how far it is economically reasonable to further improve finished water quality, and

when it is time to direct the efforts and investments towards the maintenance of the drinking

water distribution system. 
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