STUDY ON USE OF URINE FROM ECO-TOILET IN AGRICULTURAL FARMING AND ITS CO-COMPOSTING WITH SOLID WASTE

ISTALINGAMURTHY D., LOKESH K.S., HALAPPA GOWDA T.P. AND BHASKARA REDDY R.

Department of Environmental Engineering Sri Jayachamarajendra College of Engineering Mysore – 570 006, Karnataka, India

STRUCTURE OF PRESENTATION

- ✓ DOMESTIC WASTEWATER SCENARIO AND ECOSAN IN INDIA
- ✓ RESEARCH OBJECTIVES
- ✓ MATERIALS AND METHODOLOGY
- RESULTS AND DISCUSSION
- ✓ CONCLUSIONS
- ACKNOWLEDGEMENTS

DOMESTIC WASTEWATER IN INDIA

WASTEWATER COLLECTED 22,900 MLD

WASTEWATER TREATED 5,900 MLD

REST OF WASTEWATER UNTREATED

WASTE TREATED IN MEGA CITIES
 26 %

 WASTEWATER FROM SMALLER SETTLEMENTS NOT COLLECTED AND TREATED

 HUGE QUANTITIES OF TREATED WATER USED IN SEWER SYSTEMS

ECO-SANITATION IN INDIA

- PREACHED AND STARTED BY MAHATMA GANDHI - THE FATHER OF NATION IN EARLY 1900's
- IMPORTANCE IS GIVEN IN LATE 1900's
- MANY OF THE STATES ARE FOLLOWING ECO-SAN APPROACH IN PERI-URBAN AND RURAL AREAS
- SOUTHERN INDIAN STATES ARE WELL AHEAD IN PROMOTING AND SUPPORTING ECO-SANITATION

ECO-FRIENDLY EXCRETA

DISPOSAL SYSTEM

DEVELOPED BY

DEPARTMENT OF ENVIRONMENTAL ENGINEERING S.J. COLLEGE OF ENGINEERING MYSORE-570 006

SPONSORED BY

ZILLA PANCHAYAT MYSORE

TWO VAULT ECO-TOILET AT KENCHALAGODU, MYSORE

Improvised Eco-Toilet at Doddaballapur

RESEARCH OBJECTIVES

- TO EVALUATE THE NUTRIENT VALUES OF HUMAN URINE
- TO ASSESS THE FERTILIZING EFFECT OF HUMAN URINE
- YIELD COMPARISON OF GREEN GRAM (PUSA BAISAKI) UNDER DIFFERENT APPLICATIONS
- TO EVALUATE THE DEGREE OF CO-COMPOSTING OF SOLID WASTE WITH HUMAN URINE BY CONDUCTING BENCH-SCALE AND PILOT- SCALE STUDIES

MATERIALS AND METHODOLOGY

- HUMAN URINE COLLECTED IN A WATER LESS URINAL INSTALLED AT M/s. WASTEWISE TRUST LAND LAB, MAHADEVAPURA, BANGALORE, KARNATAKA, INDIA
- CROP PUSA BAISAKI (GREEN GRAM)
- ❖ FERTILIZERS UREA, SUPER PHOSPHATE AND MURIATE OF POTASH
- METHOD OF CULTIVATION

SEASON - SUMMER / KHARIF (FEBRUARY IS IDEAL)

DURATION - 65-70 DAYS

SEED RATE - 15-20 Kg/HECTARE

SPACING - ROW-ROW 30 CM

SEED TO SEED - 7.5 -10 CM

PLOT SIZE – 7.1 m X 4.7 m = 34 m^2 AREA

COLLECTION OF HUMAN URINE

COMPOST REACTORS BENCH-SCALE PILOT SCALE

METHODOLOGY

TYPES OF APPLICATION

- RANDOMIZED BLOCK DESIGN
 - WATER APPLICATION
 - FERTILIZER APPLICATION
 - HUMAN URINE APPLICATION

HUMAN URINE APPLICATION

- ONCE OR TWICE
- STOPPED 1 MONTH BEFORE HARVESTING
- COMPOST CONSISTED OF FRUIT PEELS, VEGETABLES, GRASS CUTTINGS, LEAVES, COCONUT HUSK
- BENCH SCALE COMPOSTING REACTORS
- * PILOT SCALE COMPOSTING REACTORS

RESULTS AND DISCUSSION

- IMPACT OF URINE ON THE GROWTH AND YIELD OF PUSA BAISAKI (GREEN GRAM)
- IMPACT OF URINE ON NUTRIENTS AND OTHER PARAMTERS
- COMPARISON OF YIELD OF PUSA BAISAKI AND COST ECONOMICS
- COMPOSTING OF MUNICIPAL SOLIDWASTE IN CONJUNCTION WITH HUMAN URINE
- BENCH AND PILOT SCALE STUDIES
- ⇒ IMPACT OF URINE ON RATE OF COMPOSTING

PREPARATION OF COMPOST

BENCH-SCALE

FRUIT PEELINGS : 500 GRAMS

> COCONUT HUSK : 50 GRAMS

> OLD COMPOST : 130 GRAMS

HUMAN URINE : 0, 50, 150, 250 GRAMS

PILOT-SCALE

FRUIT PEELINGS, VEGETABLES,

GRASS AND LEAVES : 14 Kg

> COCONUT HUSK : 2 Kg

OLD COMPOST : 10 Kg

HUMAN URINE : 0, 2, 4, 8 Kg

WATER APPLIED PLOT

FERTILIZER APPLIED PLOT

HUMAN URINE APPLIED PLOT

COMPARISON OF GREEN GRAM YIELD WITH WATER AND FERTILIZER APPLIED PLOTS

Treatment	Yield (%)				
	Pod (Without seed)	Seed	Bio mass		
T₀. Water applied	77.28	72.22	80.00		
T ₁ .Fertilizer applied	100.00	100.00	100.00		
T ₂ _Urine applied	93.19	95.18	140.00		

EFFECT OF HUMAN URINE ON VARIOUS PARAMETERS AFTER HARVEST

Freatment		pН	Nitrogen (%)	Phosphorus (%)	Potassium (%)	Organic Carbon (%)
T。.Water applied	Seed	6.28 ± 0.04	2.99 ± 0.02	0.22 ± 0.01	0.78 ± 0.01	30.89 ± 0.04
	Plant	6.80 ± 0.01	0.74 ± 0.00	0.27 ± 0.01	0.96 ± 0.01	13.66 ± 0.02
	Soil	7.20 ± 0.02	0.013± 0.00	26.88 ± 0.04	168 ± 0.41	0.56 ± 0.02
T ₁ . Fertilizer	Seed	6.17 ± 0.01	4.42 ± 0.02	0.48 ± 0.01	0.99 ± 0.00	32.67 ± 0.07
applied	Plant	7.25 ± 0.02	1.75 ± 0.01	0.53 ± 0.02	1.41 ± 0.01	29.11 ± 0.04
	Soil	7.32 ± 0.03	0.016± 0.00	35.82 ± 0.04	280 ± 0.08	0.72 ± 0.01
Γ₂_Urine applied	Seed	6.33 ± 0.01	4.28 ± 0.01	0.38 ± 0.00	0.85 ± 0.02	32.67 ± 0.07
	Plant	7.08 ± 0.26	1.69 ± 0.01	0.39 ± 0.01	1.04 ± 0.03	32.08 ± 0.08
	Soil	7.05 ± 0.02	0.015± 0.00	33.81 ± 0.02	168.75 ± 0.62	0.61± 0.01

COST ECONOMICS OF HUMAN URINE

PARAMETER	CHEMICAL FERTILIZER	HUMAN URINE
TOTAL EXPENDITURE (INR)	11,652.51	11,190.54
TOTAL RETURNS (INR)	16,800.68	16,326.63
COST BENEFIT RATIO	1:1.44	1:1.46

NUTRIENT VALUES OF COMPOST

BENCH-SCALE

SI. No.	Param eter	рΗ	Organic Carbon (%)	Nitrogen (%)	Phosphorous (%)	Potassium (%)	C/N ratio
1	No urine	7.96	13.51	0.88	0.67	1.20	15.35
2	50 ml urine	7.84	17.82	2.97	0.70	1.44	6.00
3	150 m l urine	8.00	20.17	2.85	0.76	1.40	7.07
4	250 m1 urine	7.77	16.40	2.64	0.78	1.48	6.21

PILOT-SCALE

SI.	Parameter	рΗ	Organic	Nitrogen	Phosphorous	Potassium	CW
No.			Carbon (%)	(%)	(%)	(%)	Ratio
1	No urine	7.58	10.61	0.75	0.60	1.20	14.15
2	2.0 Lurine	7.30	10.70	2.09	0.69	1.35	5.12
3	4.0 Lurine	7.49	11.30	2.26	0.80	1.42	5.00
4	8.0 Lurine	8.12	12.46	1.82	0.87	1.68	6.85

BENCH SCALE STUDIES

VARIATION OF TEMPERATURE WITH TIME

VARIATION OF MOISTURE CONTENT WITH TIME

PILOT SCALE STUDIES

VARIATION OF TEMPERATURE WITH TIME

VARIATION OF MOISTURE CONTENT WITH TIME

SUMMARY AND CONCLUSIONS

- URINE IS A QUICK-ACTING NITROGEN-RICH COMPLETE FERTILIZER
- THE YIELDS OF THE GREEN GRAM (PUSA BAISAKI) IN HUMAN URINE APPLIED PLOTS ARE AT PAR WITH THE CHEMICAL FERTILIZER APPLIED PLOTS
- THE COST BENEFIT RATIO ANALYSIS OF GREEN GRAM PRODUCTION INDICATES THAT THE ECONOMICS ARE IN FAVOUR OF HUMAN URINE APPLICATION INSTEAD OF CHEMICAL FERTILIZER APPLICATION
- URINE ACTS AS A GOOD ACTIVATOR AND INDUCES QUICK REACTION FOR COMPOSTING
- AS THE C/N RATIO REDUCES THE COMPOSTING PERIOD REDUCES SIGNIFICANTLY (FROM 40 DAYS TO 30 DAYS)

ACKNOWLEDGEMENTS

*THE AUTHORS THANK ZILLA
PANCHAYAT, MYSORE FOR PROVIDING
FINANCIAL ASSISTANCE TO
CARRYOUT THIS RESEARCH WORK

*THE FINANCIAL SUPPORT PROVIDED BY ECOSANRES OF SWEDEN TO PROF. K.S. LOKESH TO PARTICIPATE IN THIS INTERNATIONAL CONFERENCE IS HIGHLY ACKNOWLEDGED

