TURNING URBAN WASTES INTO WEALTH: ECOLOGICAL AND PUBLIC HEALTH IMPLICATIONS OF USE OF WASTE WATER AND ORGANIC WASTE IN URBAN AND PERI-URBAN AGRICULTURE IN ZARIA URBAN AREA, NIGERIA

Ву

S.A. Mashi^{1*}, S. Yakubu², S. Sani¹ and M.M. Alhassan¹

¹Department of Geography, University of Abuja, PMB 117 Abuja Nigeria ²Department of Geography, Federal College of Education, Zaria, Nigeria

*Correspondence (sanimashi2000@yahoo.com; 234-080-36066564

Conference Paper, International Conference on Sustainable Cities and Villages. 27th-31st August 2007, in Dongsheng District, Eros Municipality, Inner Mongolia, China

INTRODUCTION

- •Urban and Peri Urban Agriculture (UPA) is an important feature of many urban areas in Africa; because of:
- >High urban growth and urban primacy problems
- >Increasing food (especially vegetable) demands of urban population
- >Availability of MWW and MSW (as inputs)
- > Enough Cultivable lands
- >Cash flow and employment benefits
- But the sector is associated with some controversies; e.g.
- > Negative environmental effects
- > Pollution and contamination problems
- > Land-water use conflicts
- > Aesthetics

INTRODUCTION

- ·Zaria urban area is one of the most developed urban centers in northern Nigeria.
- •The town is strategic because:
- > Is an educational center
- > Is located near the center of the country
- > Is commercially important
- > There is available land and water for UPA (largely irrigation)
- > Is a traditional political headquarter (of Zaria emirate)
- > Is a major vegetable market in the country
- > UPA is well over 50 years in the town
- > No previous research has documented the effects of UPA there
- This study thus examines the ecological and public health effects of using Municipal Waste Water (MWW) and Municipal Solid Waste (MSW) in UPA practices in the area.

METHODOLOGY

- An integrated methodology was employed, comprising of:
- Questionnaire survey (Farmers and crop consumers)
- Transect walks
- Interview schedules (Farmers and crop consumers)
- Soil sampling and analyses (six sites)
- Crop sampling and analyses
- Wastes (MWW and MWW) sampling and analyses

METHODOLOGY (Contd.)

- ◆ The collected samples were analysed for heavy metals (Cu, Mn, Zn, Cr, Cd, Fe, Pb and As)
- MSW samples additionally analysed for fertility parameters (C, N, P, CEC, pH, Exchangeable Bases)
- Appropriate Statistical tests were employed:
- Descriptive statistics (data summary/trend identification)
- > ANOVA (test for differences between sampling locations
- Correlation technique (compare crop and soil level of heavy metals)

RESULTS AND DISCUSSION

Figure 1: Mean Values of pH, N, C and Na in Waste Samples Collected from Different Sampling Locations in Zaria Urban Area

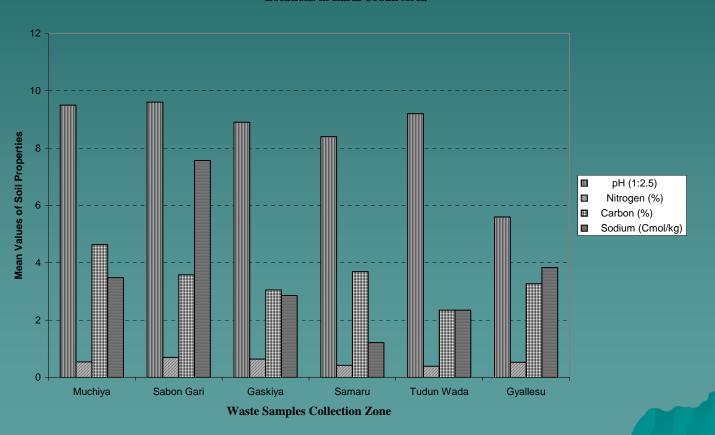


Table 1: Mean Concentrations of the Various Metals (mg/l) in MWW Samples across the different Sampling Locations in Kubanni-Galma River Basin

Heavy	Maximum	Va	Values for the various zones					Summary of ANOVA		
Metals	Permissible	HNE	TJK	AGR	GYL	JSH	Cal. F	Crit. F	S.O.D.	
Fe	0.01	0.6	0.05	0.4	0.2	0.5	2.15	1.78	S	
Cu	0.2	0.03	0.02	0.05	0.04	0.03	1.02	1.78	NS	
Zn	Up to 5.0	0.02	0.02	0.03	0.04	0.03	1.32	1.78	NS	
Mn	0.2	0.1	0.04	80.0	0.1	80.0	2.32	1.78	S	
Pb	-	0.03	0.02	0.05	0.04	0.06	1.17	1.78	NS	
Ni	0.2	0.03	0.03	0.05	0.04	0.04	0.96	1.78	NS	
As	0.1	0.02	0.02	0.03	0.03	0.05	0.54	1.78	NS	
Cr	0.1	0.01	0.07	0.1	0.1	0.1	2.42	1.78	S	

Index to the Sampling Locations: _HNE = Hanwa Extension; TJK = Tudun Jukun; AGR = Agoro; GYL = Gyallesu; JSH = Jushi

S = Significant at 0.005 probability level; NS = Not significant at 0.005 probability level

Figure 1: Mean Values of pH, N, C and Na in Waste Samples Collected from Different Sampling Locations in Zaria Urban Area

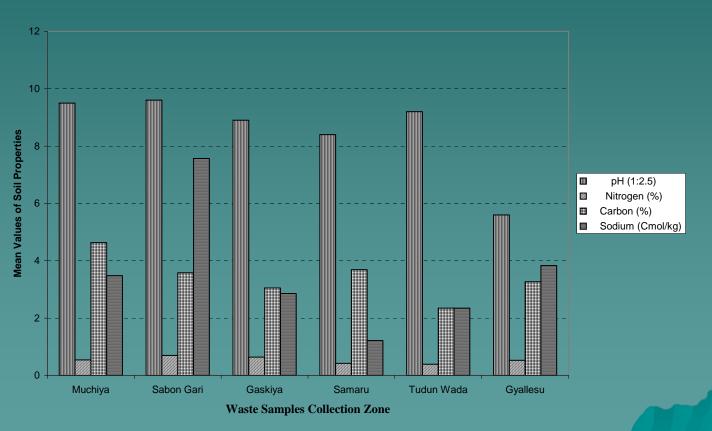


Figure 2: Mean Values of P, K, CEC, %BS and Mg in Waste Samples Collected from Different Sites in Zaria Utban Area

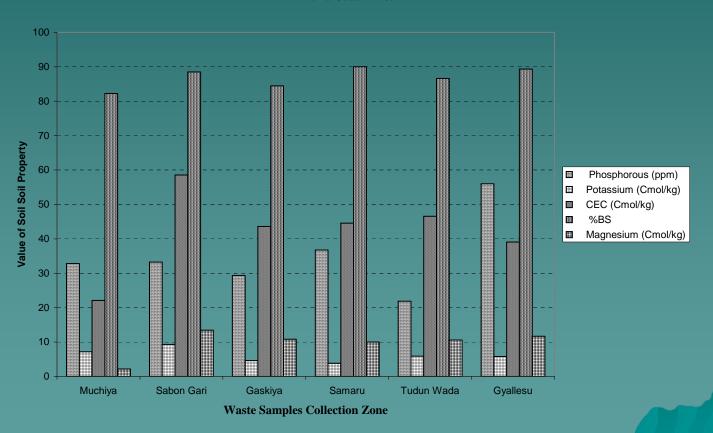


Table 2: Descriptive Statistics of the Heavy Metals Determined in MWW
 Samples across the Kubanni-Galma River Basin

Heavy	Maximum	Descriptive Statistical Parameter						
Metal	Permissible	Range Mea	n Stan. Dev.	Percentage Coeff.Vari.				
Fe	0.01	0.05-0.6 0.3	5 0.02	6.7				
Cu	0.2	0.02-0.05 0.0	3 0.01	333				
Zn	Up to 5.0	0.02-0.04 0.0	3 0.007	233				
Mn	0.2	0.04-0.1 0.0	8 0.02	25.0				
Pb	-	0.02-0.06 0.0	4 0.007	175				
Ni	0.2	0.03-0.05 0.0	4 0.007	175				
As	0.1	0.02-0.05 0.0	3 0.01	33.3				
Cr	0.1	0.07-0.1 0.0	9 0.01	11.1				

Note: The range and means are for all the six Sampling Locations indicated in Table 1.

Figure 3: Mean Values of Cu, Cd, Ni and Pb in Waste Samples Collected from Different Sites in Zaria Urban Area

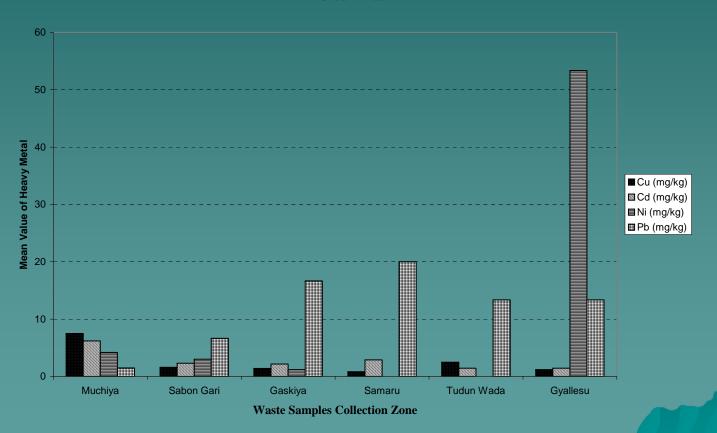
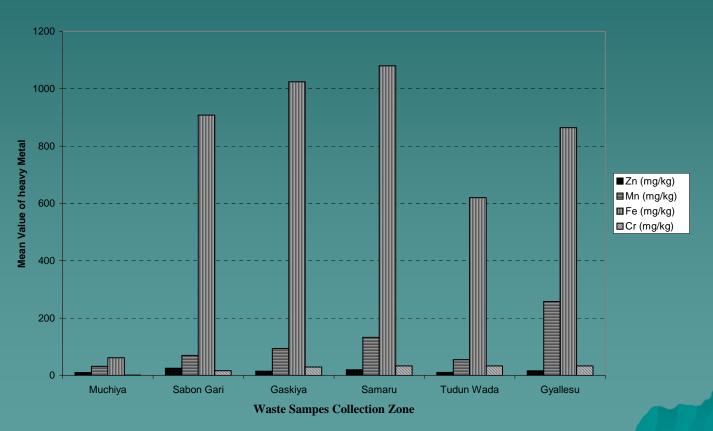


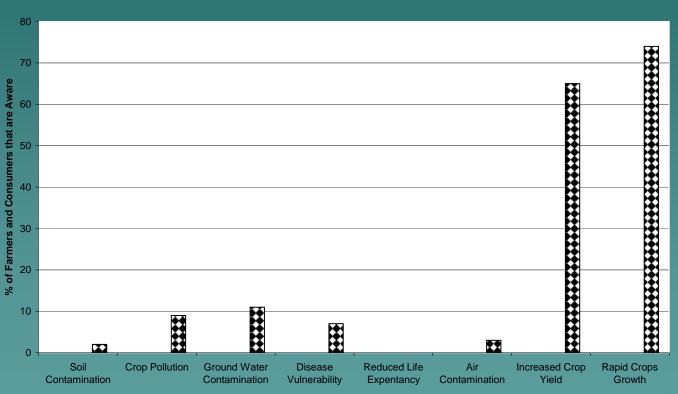
Table 3: Descriptive Statistics of the Heavy Metals Determined in Shallow Well Water Samples across the Kubanni-Galma River Basin

Heavy	Maximum	Descriptive Statistical Parameter							
Metal	Permissible	Range	Mean	Stan. Dev.	Percentage Coeff.Vari.				
Fe	0.01	0.001-0.005	0.0025	0.000	14.0				
Cu	0.2	0.002-0.007	0.0045	0.0006	133				
Zn	Up to 5.0	0.0001-0.0004	0.0002	80000.0	22.85				
Mn	0.2	0.0003-0.0008	0.00035	0.00006	17.14				
Pb	_	0.001-0.005	0.0035	0.00045	12.85				
Ni	0.2	0.0025-0.0046	0.0032	0.0007	21.85				
As	0.1	0.002-0.007	0.005	0.001	20.0				
Cr	0.1	0.0003-0.0005	0.0004	0.0001	230.0				

Note: The range and means are for all the six Sampling Locations indicated in Table 1.

Figure 4: Mean Values of Zn, Mn, Fe and Cr in Waste Samples Collected from Different Sites in Zaria Urban Area




Table 4: Fertility Rating used in Characterising the Fertility of Urban Waste Samples
Analysed in Zaria Urban Area

Fertility Rating

Property	Low	Medium	High	Very
				High
pH	4.1-5.2 ¹	5.3-6.5 ²	6.6-7.4 ³	7.5-0.34
·N	<0.10	0.10-0.45	>0.45	
Р	5-15	15-30	30-50	>50
С	<1.5	1.5-4.5	>4.5	
Ca	2-5	5-10	10-20	>20
Mg	0.3-1.0	1-3	3-8	8<
K	0.2-0.3	0.3-0.6	3-8	8<
Na	0.1-0.3	0.3-0.7	0.7-2.0	>2.0
CEC	5-15	0.3-0.7	0.7-2.0	>2.0
%BS	20-24	40-60	60-80	80-100

Note: ¹pH strongly acidic; ²pH acidic; ³pH near neutral; ⁴pH alkaline

Figure 5: Knowledge of Ecological and Public Health Effects of Using MWW and MSW Among Farmers and Consumers of UPA-Produced Crops in Zaria Urban Area

Ecological and Public Health Effects

Table 5: Summary of ANOVA Comparing Mean Values of the various Properties of the Waste Samples Analysed over the Six Sampling zones

Property	Calculated F-value	Critical F-value	Degree of Freedom	Significance of the difference
pH	0.39	2.26	44	NS
N	1.03	2.26	44	NS
P	2.45	2.26	44	S
С	0.76	2.26	44	NS
Ca	3.12	2.26	44	S
Mg	2.45	2.26	44	S
ĸ	2.41	2.26	44	S
Na	2.33	2.26	44	S
CEC	4.12	2.26	44	S
%BS	1.56	2.26	44	NS
Cu	3.22	2.26	44	NS
Zn	2.67	2.26	44	S
Mn	16.33	2.26	44	S
Fe	23.16	2.26	44	S
Cr	5.34	2.26	44	S
Cd	2.36	2.26	44	S
Ni	3.31	2.26	44	S
Pb	5.47	2.26	44	S

Figure 6: Heavy Metal Contents (Mg/kg) in Soil, Cabbage and Carrot Crop Samples in Areas Under UPA in Zaria, Nigeria

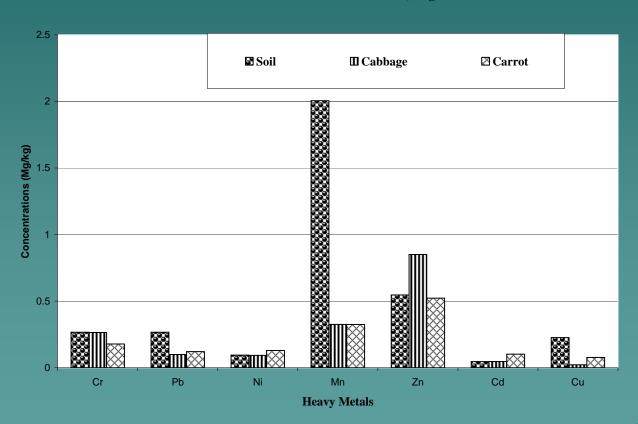


Table 6: Correlations between Soil and Carrot (Darcus carota) Crop

Levels of the Various Metals

Crop Soil Levels of the Various Metals							
Levels of the Various Metals	Cu	Cr	Cd	Mn	Zn	Pb	Ni
Cu	0.341	0* -	-	_	-	_	-
Cr	-	0.411	22 -	-	-	-	-
Cd	-	-	0.670	5* -	-	-	-
Mn	-	-	-	0.416	5* -	-	-
Zn	-	-	-	-	0.3211	_	-
Pb	-	-	-	-	-	0.495	52** -
Ni	-	-	-	-	-	_	0.2163

Note: The asterisks denote the correlations that are statistically significant

Table 7: Correlations between Soil and Cabbage (*Curbita amaranthus*)

Crop Levels of the Various Metals

Crop Soil Levels of the Various Metals								
Levels of the Various Metals	Cu	Cr	Cd	Mn	Zn	Pb	Ni	
Cu	0.1176	* <u>-</u>	-	-	-	-	-	
Cr _	-	0.5620*	*	-	-	-	-	
Cd	-	-	0.2714	-	-	-	-	
Mn	-	-	-	0.4043*	-	-	-	
Zn	-	-	-	-	0.5211	_	-	
Pb	-	-	-	-	-	0.4624*	* _	
Ni	-	-	-	-	-	-	0.2307	

Note: The asterisks denote the correlations that are statistically significant

MAJOR FINDINGS

- → The wastewater being used in irrigating soils under UPA in the area contain some amounts of As, Fe, Cr, As, Cu, Zn, Mn and Pb
- → The fertility rating of the MSW is high to very high, but contains high proportions of Zn, Fe, Cr and Pb
- The farmers make use of the MSW due to its positive effects on crop yield and also because access to inorganic fertilisers is increasingly becoming difficult for them
- Levels of Pb, Cd, Cr, Zn and Cu in ground water in shallow wells around the UPA fields are 4-5 times higher than those in shallow wells located way from such fields
- There are evidences of heavy metal accumulation in two major vegetable crops being cultivated in the area
- The farmers and consumers of the crops generally have low level of perception of public health consequences of doing so

CONCLUSIONS AND RECOMMENDATIONS

- ◆ The MSW being used in the area is nutrient-rich and very high in fertility rating but contains potential pollutants
- There are valid reasons to be concerned about the possibility of occurrence of sodicity and heavy metal contamination problems in food chain cycles in the area
- There is high level of ignorance of these problems on the both the side of the farmers and crop consumers in the area
- Public enlightenment on the public health consequences is therefore necessary
- There is also the need to raise the capacity of the farmers for them to be in a position to carry out screening and treatment of wastewater and municipal waste before use in UPA.

CLOSING

THANK

YOU

FOR

LISTENING