Sustainable Sanitation for Low-Income Densely Populated Urban Areas in Indonesia

Almy Fithriana Malisie Ralf Otterpohl

Institute of Wastewater Management and Water Protection
Hamburg University of Technology

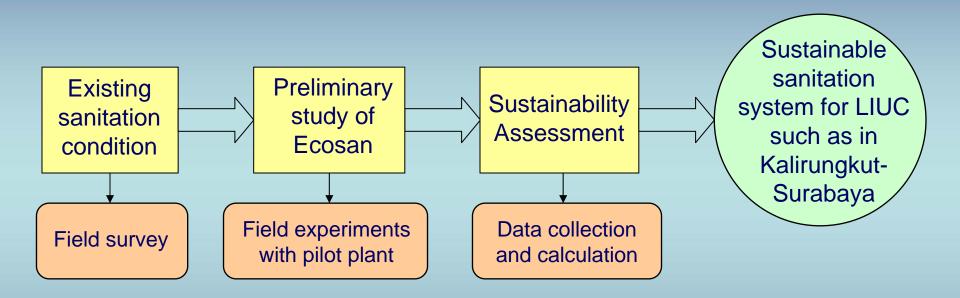
Presentation Outline

- Background Information
- Objective and Methodology
- Scenario Comparison
- Ecosan Implementation in Indonesia
- Sustainability Assessment
- Conclusions and Future Outlook

Indonesia Country Profile

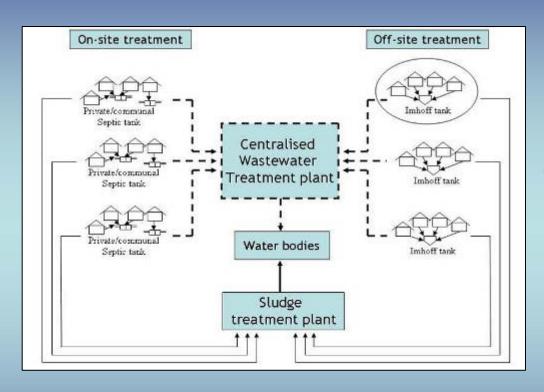
- The world's largest archipelago (1.91 million km² land and 81000 km of coastline, scattered over 17,508 islands)
- Population :±85 Million Urban; 135 Million Rural) → 69% of urban population and 46% or rural population have access to improved sanitation (WHO & UNICEF, 2001).
- The lowest levels of sewerage (only 16 % of total population) and sanitation coverage in Asia (World Bank, 2003)

Indonesia Country Profile



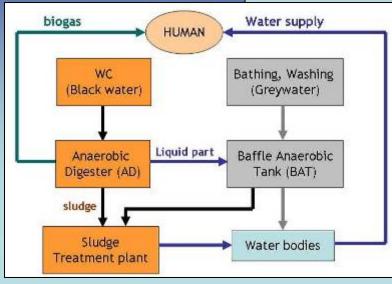
Observations at the Surabaya case study area:

- Had septic tanks installed less than
 5 m from the wells
- Most shallow wells in areas of high pop. density (> 100 p/ha) were reported to be contaminated with fecal coliform bacteria


- Preliminary study of an Ecological Sanitation Concept implementation in a low income case study urban area in Indonesia
- → To assess the sustainability (economical, environmental, and social aspects) of the Ecosan system together with 2 other existing sanitation systems.

Objectives and Methodology

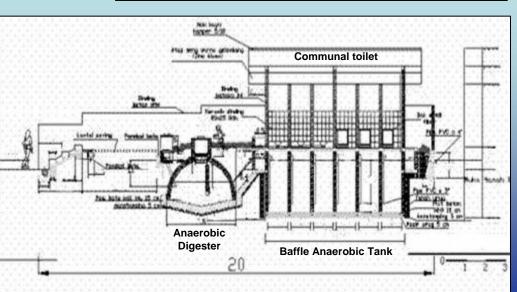
SSDP Scenario


Short term strategyLong term strategy

Surabaya Sewerage Development Project (SSDP) was proposed by the local government on Surabaya Master Plan for the year 2020.

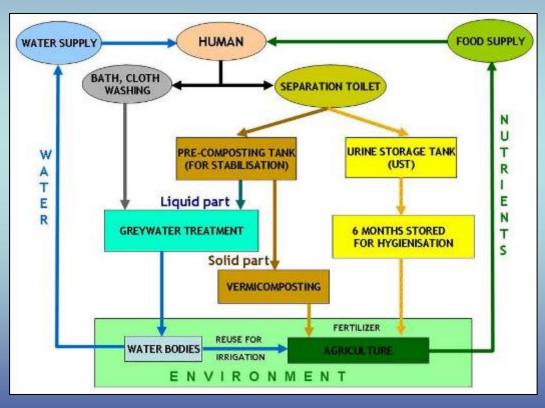
DEWATS Scenario

Sc<mark>eri</mark>ario Comparison



Source: www.best.or.id

BORDA: www.borda-sea.org


Ecosan Scenario

Scenario Comparison

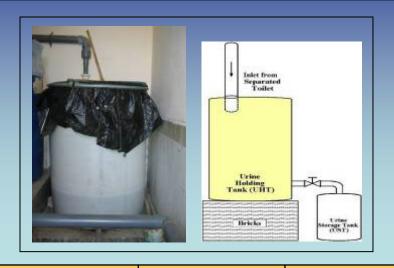
Location: A 20 m² area next to

Pusdakota Office in Rungkut Area, Surabaya,

East Java, Indonesia

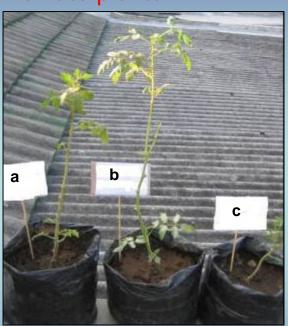
Brown water treatment - Vermicomposting

Ecosan Implementation in Indonesia

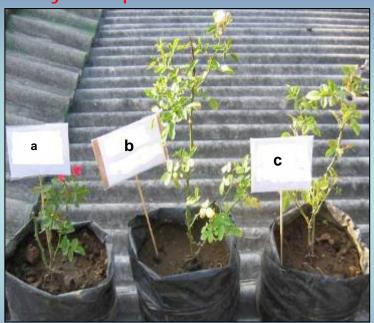


Faecal matter (without toilet paper)
a) vermicomposted with *Eisenia*fetida after 30 days
b) Vermicomposted with *Lumbricus*rubellus after 30 days

Parameter	Indonesian Compost National Standard	Eisenia fetida	Lumbricus rubellus
C (% C)	Min. 9.8	17.11	14.6
N (%Kjedahl)	Min. 0.40	1.48	1.22
P (%P ₂ O ₅)	Min. 0.10	3.36	3.08
K (%K ₂ O)	Min. 0.20	3.51	2.98
E.coli (MPN/gr)	Max. 1000 MPN/gr	120	230
C/N	Min. 10	11.56	11.97


Yellow water treatment - Storage

Ecosan Implementation in Indonesia



Parameter	Fresh urine	Urine in Storage Tank after 6 months
Total C (%)	1.46	0.04
Total N (%)	1.38	0.11
Phosphorous (% P ₂ O ₅)	0.12	0.003
Potassium (% K ₂ O)	0.23	0.0275
E.coli (colony/gram)	0	0

Tomato plants

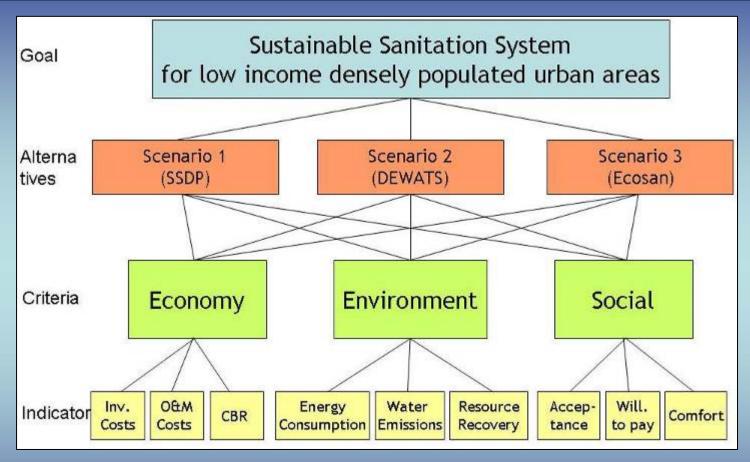
Baby rose plants

Different growth rate of plants under influence of urine and vermicast fertilizers

- a. Urine as fertilizer (200 ml/week) and vermicast as soil conditioner (0.014 kg/m²) added
- b. Only urine (200 ml/week) added
- c. Only vermicast (0.014 kg/m²) added

Grey water treatment - Sub Surface Flow Constructed Wetlands (SSFCW)

Ecosan Implementation in Indonesia



Small scale constructed wetland

Coconut Charcoal

		Outlet				Indonesian
Parameter	Parameter Inlet Media variation		variation	Plant variation		regulation for
		Charcoal	Gravel	Cattails	Reeds	water discharge
BOD (mg/l)	200-490	23-75	23-170	23-100	55-170	12
COD (mg/l)	530-1220	137-313	200-340	185-230	137-340	100
E.Coli (MPN/100ml)	$(1.6-2.9)$ x 10^{13}	370 – 850,000	65- 4,500,000	1,700- 4,500,000	65-35,000	10,000

Sustainability Criteria

The list of criteria was based on the work of several different authors who worked in the area of sustainable sanitation (Balkema, 2003; Hellström et al., 2000; Urban Water, 2004; Larsen and Gujer, 1997; Larsen and Lienert, 2003; Lennartsson, 2004).

Environmental Criteria - Energy Consumption

Sustainability
Assess nent

Energy	Caarania 1	Scena	ario 2		Scena	ario 3		
consumption (MJ/p/d)	Scenario 1	Comm.	Decent.	. Communal		Decentralised		
a. Toilet usage	0.162	0.19	0.162	0.19	0.19018		0.16216	
b. Recycled				BW	YW	BW	YW	
product transportation	-	-	-	0.016	0.29	0.019	0.266	
c. Sludge transportation	0.00053	0.00053	0.00083	0.0008		0.0022		
c. Septage treatment	0.0086	0.0074	0.016	0.0194		0.053		
TOTAL SPECIFIC ENERGY	0 171	0.198	0.178	0.71		0.68		
CONSUMPTION (MJ/p/d)	0.171	0.7	184			66		

BW= Brownwater, YW=Yellowwater

Environmental Criteria - Water Emission

Sustainability
Assess nent

Parameter	Scenario 1	Scenario 2	Scenario 3	Septage treatment effluent
BOD (mg/l)	156ª	21.6	13.1ª	80 <mark>p</mark>
COD (mg/l)	443 <mark>a</mark>	35.3	54.2ª	200 ^b

^a = Calculation based on computer sheet of Sasse, 2000

b = Laboratory of Settlement Environment Department

Environmental Criteria - Resource Recovery

Sustainability
Assess nent

Scenario 1

Based on the Surabaya city Master Plan 2020, there are no plans to recover resources for the SSDP system

Scenario 2

Biogas from anaerobic digester

From communal system	1.2-1.4 m ³ of biogas per day		
From decentralized system	4.07 m ³ of biogas per day		

Scenario 3

Nutrients	Greywater Production		Yellowwater Production		Brownwater Production	
	kg/p/y	%	kg/p/y	%	kg/p/y	%
Nitrogen (N)	0.4	2	12.5	68	5.5	30
Phosphorous (P)	0.4	13	0.9	30	1.6	57
Potassium (K)	0.3	10	1.9	67	0.6	23

Economical Criteria - Investment, O&M Costs

Sustainability
Assess nent

Scenario	Investment Cost (€)	Annual O&M Cost (€)	Annual Benefit (€)
1 - SSDP	6,173,838	308,692	558,125
2 - DEWATS	2,896,973	141,888	559,603
3 - ECOSAN	2,993,827	233,094	1,508,125

Sustainability indicators	SSDP Scenario	Scenario 2	Scenario 3
Acceptance	N/A	95 % well accepted	27% accept to use UDT, 57% accept to reuse faecal as compost, 26% accept to reuse urine, 15% accept to treat their own waste
Comfortability	N/A	98 % fell comfort	40% users feel comfort using UDT
Willingness to pay	52 % willing to pay for house connection	100% willing to pay the communal toilet fee (Rp 300,-)*	61% willing to pay new sanitation concept, 27% willing to pay Rp 300,- for one usage ecosan communal toilet

N/A = No quantitative data from SSDP report.

^{*} Rp 12,000,- per Euro is used as the basic exchange rate for the calculation in this work.

SSDP scenario:

- The highest cost and the lowest benefit.
- ✓ The lowest energy consumption but lowest water discharge quality.
- No social barrier

DEWATS scenario:

- ✓ The lowest investment and O&M costs.
- Good outlet quality and can reuse biogas
- Community is well-accustomed to the system

ECOSAN scenario:

Positive findings that support implementing Ecosan in Indonesia:

- Ecosan can be feasibly implemented in Indonesia without advanced technology.
- Ecosan recovers nutrients.
- Ecosan has the highest financial benefit.

Challenges:

- Social aspect due to local population's apprehension in reusing human waste.
- High fertilizer transport cost
- Special user education needed

