DeSaR-project

Introduction

Landustrie

• DeSaR: Decentral Sanitation and Reuse

Introduction

Landustrie

• DeSaR: Decentral Sanitation and Reuse

• Demonstration DeSaR-project

Partners

- Landustrie Sneek BV
- Wageningen Universiteit
- Roediger VHT GmbH
- Woningstichting De Wieren
- Woningstichting Patrimonium
- Gemeente Sneek

Separation at source

Landustrie

• Black water (toilet water):

- > Difficult degradable organic material
- High nutrient concentration
- Hormones and medicine traces

Grey water

- Easily degradable organic material
- High temperature
- Heavy metals (below irrigation standards)
- Low salt concentration (irrigation)

How to get a concentrated Landustrie organic fraction?

 Vacuum toilets are used, they flush with 1L water and 100L of air. Reduction of 36L*p*p*d water, is 25% of total water consumption

How to get a concentrated Landustrie organic fraction?

 Vacuum toilets are used, they flush with 1L water and 100L of air. Reduction of 36L*p*p*d water, is 25% of total water consumption

How to get a concentrated organic fraction?

 Vacuum toilets are used, they flush with 1L water and 100L of air. Reduction of 36L*p*p*d water, is 25% of total water consumption

How to get a concentrated organic fraction?

 Vacuum toilets are used, they flush with 1L water and 100L of air. Reduction of 36L*p*p*d water, is 25% of total water consumption

- 7 L*p*p*d of concentrated toilet water is produced (theory)
- 5 L*p*p*d of concentrated toilet water is produced (practice)

Concentrated toilet water characteristics

Parameter (g * L ⁻¹)	Influent UASB _{st}
COD _{tot}	16,1
COD _f	4,1
COD _p	12,0
VFA	1,4
TN	1,8
NH ₄ -N	1,2
Ptotal	0,24
PO ₄ -P	0,085

UASB-septic tank

	Black water (HRT = 15 days)	Concentrated Black water (HRT = 30 days)	Concentrated Black water (HRT = 30 days)		d Black Water -30 days)
CODt infl	5,5	12,8	12,8	16,1	16,1
COD (%)	90 – 93	61	78	87	93
COD _{ss} (%)		88	94	95	98
COD _{col + sol} (%)		n.d	n.d	67	71
Temp (°C)	tropical	15	25	Not heated (20±2 ⁰ C)	35
Methanisation rate	n.d	n.d	n.d	60%	76%
CH ₄ -production (L/day/capita)	12 - 15	6,4	14,5	13	19,5

Energy production

Houses	1000	
Inhabitants	2300	
Blackwater + kitchen waste production	13,8	m ³ * d ⁻¹
CODt conc	20	g COD * L-1
CODt load	276	kg COD _t * d ⁻¹
Temp reactor	25	°C
_HRT*	9	days
Methanisation rate*	60	%
Biogas production	58	$m^3 CH_4 * d^{-1}$
CHP efficiency	85	%
Heat prod (60%)	12,3	kW _{ther}
Elec prod (40%)	8,2	kW _{elec}

Energy_{therm} consumption

Temp difference 5	°C
Volume reactor 125	m ³
Surface reactor wall 140	m ²
Heating efficiency 75	%
Isolation 2,5	w / m ² * K
Energy loss of reactor 0,3	kW
Energy for heating influent 5,1	kW
Total energy (heat) 5,4	kW _{ther}

Energy_{elec} consumption Landustrie

Stirrer storage vessel	0,37	kW
Influent pump	0,75	kW
Stirrer UASB	0,06	kW*
Controllers	0,1	kW
Total energy (elect)	1,3	kW _{elec}

* stirrer of 7.5kW, operating 12 minutes per day.

Struvite precipitation

 $PO_4^{3}-P$ Mg^{2+} NH₄-N $(mg * L^{-1})$ $(mg P * L^{-1})$ $(mg N^{*} L^{-1})$ Influent 7,5 112 1100 Added 0 2290 2579 Molar ratio 1.2 1.0 1.0 Effluent n.d 17,5 75

Benefits of Decentral Sanitation

Energy production

Benefits of Decentral Sanitation

- Energy production
- If kitchen grinder is used around 20% less solid domestic waste.

Benefits of Decentral Sanitation

• Energy production

• If kitchen grinder is used around 20% less solid domestic waste.

Landustrie

• Produced fertilizer can have economical value

Benefits of Decentral Sanitation

• Energy production

• If kitchen grinder is used around 20% less solid domestic waste.

- Produced fertilizer can have economical value
- Flexibel

Other benefits of Decentral Sanitation

 If it would be necessary in the future to apply more treatment steps in order to remove more or other hazardous compounds, it is cheaper to do this with separate waste streams than with a combined stream.