

Control of Enteric Bacteria in Source-Separated Human Urine

NORBEL A. TABO Assistant Professor De La Salle University-Dasmariñas Dasmariñas, Cavite, Philippines

Ecological Sanitation

Source: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH

Source: Center for Advanced Philippine Studies

Problems encountered

Low acceptance of the community on ecosan
Lack of political will

Lack of supportive environment

Pathogens can easily be transmitted to humans through vectors and vehicles

Public Health Risk

Infectious Agents in Urine

- Escherichia coli
- Proteus mirabilis
- Enterococcus spp.
- Pseudomonas aeruginosa
- Klebsiella spp.

Tabo, et al. 2006. Occurrence and Survival of Enteric Bacteria in Source-separated Human Urine

Ten Leading Causes of Morbidity in the Philippines

Disease	Number of Cases	Rate	
		per 100,000 population	
1. Pneumonia	670,231	828.8	
2. Acute Watery Diarrhea	572,259	707.7	
3. Bronchitis/Bronchiolitis	538,990	689.9	
4. Hypertension	408,460	522.8	
5. Influenza	339,881	435	
6. TB Respiratory	132,725	169.9	
7. Diseases of the Heart	384,82	49.3	
8. Acute Febrile Illness	25,400	32.5	
9. Malaria	22,284	27.6	
10. Dengue fever	15,279	19.6	

Treatment Methods

Storage

- Simplest method in controlling pathogens
- Increased temperature and pH
- Use of chemicals
- Biocontrols (on trials)
 - Use of Bacillus spp.
 - Use of *Bdellovibrio* spp.

General Objective

Evaluate the antagonistic effect of Bacillus subtilis against the isolated enteric bacteria in source-separated human urine.

Specific Objectives

- 1. Isolate *B. subtilis* in urine-treated soil for biocontrol studies.
- 2. Determine the inhibitory effect of chemical (guava extract, cell-free extract, EM extract and urea) and biological (*B. subtilis*) control agents on enteric bacteria.
- 3. Identify the most effective treatment in the control of enteric bacteria.

METHODOLOGY

1. Research Procedures

- Isolation of Bacillus subtilis
- Antagonism Assay
- Mixed-culture Experiment
 - Nutrient Broth
 - Urine
- 2. Research Statistics
 - Simple Linear Correlation
 - T-dependent Test
 - Analysis of Variance (ANOVA)
 - Post-Analysis of Variance (post ANOVA)

COLLECTION OF SAMPLES

URINE

Screened (Multistix™ Urinalysis Strips)

Placed in a 2.7-L amber bottle

Boil for 15 mins

Transferred to 300-mL bottle with 100 mL each.

Set aside

SOIL

Mixed with urine in a 1:10 vol/wt ratio

Incubated in an open area for 5 days

Screened Urine

Urine-treated Soil

ISOLATION OF Bacillus subtilis

Urine-treated Soil

10 g suspended in 90 mL sdH₂O

Mixed

Serial dilution up to 10⁻⁶

Spread plating

Incubated at 30°C for 48 hrs

Cream-colored, round colonies were purified

Subjected to Morphological and Biochemical Test

PREPARATION OF CONTROL AGENTS

ANTAGONISM ASSAY

24-hr old *E. coli* and *E. aerogenes*

Seeded separately into MHA

Wells are made using cork-borer

Control agents were introduced into the well

Replicated

Incubated at 30°C for 48 hrs

Zones of Inhibition were

observed and measured

MIXED-CULTURE EXPERIMENT

24-hr old, 0.5 Mc Farland 4 mL B. subtilis	24-hr old, 0.5 Mc Farlan 2 mL E. coli	ad 24-hr old, 0.5 Mc Farland 2 mL E. aerogenes
	Mixed in	test tube
	Determi	ned the initial count
	Incubate	ed at 30°C for 5 days
		ned the densities y for 5 days

MIXED-CULTURE EXPERIMENT (URINE)

SCREENED URINE

Add 1 mL of E. coli and E. aerogenes

Add into screened urine

Add 10 mL of control agents

Determine the densities everyday for 5 days

RESULTS

Table 1. Colonial and Morphological Characteristics of the Isolated Bacterium from Urine-treated Soil Cultured in Nutrient Agar.

	Results
Characteristics	
Colonial Characteristics	
Size (colony)	5 mm
Margin	round to irregular
Elevation	Flat
Surface	dull and dry
Pigmentation	creamy-white
Morphological Characteristics	
Size (cell)	0.5 to 3.0 µm
Shape	rods
Arrangement	solitary
Oxygen Requirement	Aerobic
Endospore	Present
Gram Reaction	Positive

Table 2. Selected Biochemical Characteristics of the Isolated Bacillus.

Results
+
+
-
+
+
-

Table 3. Antagonism Assay of the Control Agents on *E. coli* and *E. aerogenes*

Treatment	Zone of Inhibition (in mm)	Growth Inhibition
<u>Treatment vs <i>E. coli</i></u> Water	7	-
T1 (Guava extract)	7	-
T2 (Cell-free extract)	15	+
T3 (EM)	12	+
T4 (Urea)	14	+
T5 (Bacillus subtilis)	40	+
<u>Treatment vs <i>E. aerogenes</i></u> Water	7	-
T1 (Guava extract)	7	-
T2 (Cell-free extract)	9	+
T3 (EM)	8	+
T4 (Urea)	8	+
T5 (Bacillus subtilis)	14	+

BS suspension on EC

Cell-free extract on EC

Figure 1. Antagonism Assay of Bacillus subtilis and its extract on *E. coli* and *E. aerogenes*

Figure 2. Mixed culture experiment in Nutrient Broth

Figure 3. Survival of enteric bacteria in source-separated urine with control agents

Table 4. Identification of the most effective treatment in the control of enteric bacteria

Treatment	Initial Count	Final Count	Mean Difference (Initial vs Final)	Mean Difference (Treatments vs Control)
Т0	8.7 X 10 ⁶	8.5 X 10 ⁶	2.0 X 10 ⁵ ns	
T1	6.7 X 10 ⁶	6.7 X 10 ⁶	0 ns	-2.0 X 10 ⁵ ns
T2	7.7 X 10 ⁶	5.7 X 10 ³	7.7 X 10 ⁶ **	7.5 X 10 ^{6**}
Т3	5.5 X 10 ⁶	7.8 X 10⁵	4.7 X 10 ⁶ **	4.6 X 10 ^{6**}
T4	7.7 X 10 ⁶	1.2 X 10 ⁰	7.7 X 10 ⁶ **	7.5 X 10 ^{6**}
T5	6.5 X 10 ⁶	2.0 X 10 ⁰	6.5 X 10 ⁶ **	6.3 X 10 ^{6**}

ns not significant

** significant at 0.1%

D value of the most effective treatment in the control of enteric bacteria

- T2 inhibited the growth of the test organisms very slowly with a D value of 15.53 hrs.
- T4 and T5 totally inhibited the growth of enterics with a D value of 7.05 hrs

CONCLUSION

- 1. Bacillus subtilis was not inhibited by enteric bacteria.
- 2. B. subtilis had the greatest inhibitory effect on enterics, as compared to chemical control agents such as guava extract, cell-free extract and EM extract. It is comparable to urea in terms of inhibitory effect and killing ability.
- 3. *B. subtilis* is a good alternative agent in the control of the growth of enteric bacteria in source-separated human urine.

RECOMMENDATION

- 1. Examine the growth of plants watered with *B. subtilis*-treated urine.
- 2. Test the synergistic effect of *Bacillus* with other non-pathogenic soil bacteria.
- 3. Determine the growth and survival of ammonia-reducing bacteria in urine with enteric bacteria.

ACKNOWLEDGEMENT

- WASTE, Advisers on Urban Environment and Development The Netherlands - Mr. Gert de Bruijne
- De La Salle University-Dasmariñas
- City of San Fernando, La Union
- SWAPP Ms. Lizette Cardenas
- CAPS Mr. Dan Lapid
- IDEAS Ms. Eileen Sison
- CAPS Mr. Leo De Castro
- Mr. Gerry Parco (UP Diliman)
- Dr. Cristina Salibay (DLSU-D)
- Dr. Lilen Sarol (UP Manila)

THANK YOU VERY MUCH !!!

