Decentralised treatment of high strength sewage in UASB and Anaerobic-Hybrid septic tanks

Nidal Mahmoud

Institute of Environmental and Water Studies (IEWS) Birzeit University (BZU)

> An International Conference on The Sanitation Challenge New Sanitation Concepts and Models of Governance Wageningen, May 19-21, 2008

On-site sanitation !

→ Wastewater reuse

close to the

point of origin

Treatment of different wastewater streams

water consumption

Reduce < energy use</p>

investment costs

Publicly manageable (scale)

Comply with sparse population

On-site sanitation in Palestine !?

• Cesspits and septic tanks are the primary modes of on-site wastewater disposal and sewage pre-treatment.

sustainable

Low-cost

plain

effective

• A sanitation intervention is needed.

Adequate option

The UASB-septic tank system represents an effective and low-cost onsite pre-treatment alternative for domestic wastewater (Bogte *et al.*, 1993; Lettinga *et al.*, 1993).

The performance of the UASB-septic tank has been recently investigated under Palestine conditions (Al-Shayah and Mahmoud, 2008; Al-Jamal and Mahmoud, 2008).

COD: hot p	period resul	lts			
Parameter	UASB-septic tank 1 (R1) (HRT = 2 days)		UASB-septic tank 2 (R2) (HRT = 4 days)		
COD	Effluent (mg/L)	Removal (%)	Effluent (mg/L)	Removal (%)	
Total	537 (60)	54 (6)*	493 (95)	58 (7)*	
Suspended	97 (43)	85 (6)*	69 (29)	89 (4)*	
Colloidal	129 (30)	27 (19)	121 (31)	32 (17)	
Dissolved	311 (64)	12 (20)	304 (80)	14 (25)	
COD: cold period results *: Significant difference ($\rho < 0.05$)					
Parameter	UASB-septic tank 1 (R1) (HRT = 2 days)		UASB-septic tank 2 (R2) (HRT = 4 days)		
COD	Effluent (mg/L)	Removal (%)	Effluent (mg/L)	Removal (%)	
Total	433 (109)	51 (9)	408 (109)	54 (11)	
Suspended	62 (34)	83 (10)*	45 (30)	87 (8)*	
Colloidal	104 (46)	20 (32)	112 (41)	10 (37)	
Dissolved	265 (96)	24 (15)	248 (94)	28 (18)	

Problem

The achieved values of VFA and CODdis, in the system operated by Al-Shayah and Mahmoud, of 160 and 304 mgCOD/l; and the effluent biodegradable COD of 225 and 192 mg COD/l indicate that the reactor can achieve further treatment.

Hypothesis

- The reactor performance might be improved by:
- enhancement of sludge bed methanogenic activity by for instance inoculating the reactor with well adopted sludge might further
- provision of packing material in the upper part of the reactor

Objectives

To promote a viable and affordable on-site sanitation alternative for rural communities.

Specific objectives

The main goal of this research is to asses the possibility of enhancing the process performance of the UASB-septic tank treating sewage under Palestinian conditions by (1) adding a packing media to the top of the reactor, thus converting the UASB-septic tank to an anaerobic hybridseptic tank; and (2) by inoculating the reactors with sludge of good quality, viz. well adopted sludge.

Influent and effluent CODtot and removal efficiencies (%) in a UASB-septic tank and an AH-septic tank reactors

the second second		STATE A		Fix			100 4.5 1
			Cold period			Hot period	
		15 – 108 day		108 – 227 day		A. Wall	
		to the	n = 22		-	n = 13	1 Art
In the second		Influent	UASB-ST	AH-ST	Influent	UASB-ST	AH-ST
CODtot (mg/l)	Average	1042	520	539	1141	385	509
COD removal (%)	Average	1	50	48	1	66	55
Tair (°C)	Average	16			27	20	

Influent and effluent conc. and removal (%) in UASB-st and AH-st

VS, TS, and VS/TS ratios (0-227 days)

- I - I	VS	TS	VS/TS
UASB-st	47	68	67
AH-st	37	55	68

The VFA/CODdis had remarkably reduced from 40% in the influent to 12% in the effluent of both reactors, with a substantial decrease of VFA concentration in the effluent.

Conversion in UASB -septic tanks: 2 days HRT

Parameter	This research	Al-Shayah and Mahmoud (2008)	
H (%)	29	16	
A (%)	30	19	1
M (%)	36	15	1

Conclusions

The performance of the UASB-septic tank reactor was substantially improved by starting up the reactor with well adopted anaerobic sludge.

The UASB-septic tank reactor is more efficient as compared to the AH-septic tank reactor.

Recommendations

Application of UASB-septic tank for grey water treatment should be assessed.

Application of decentralized "community onsite and/or one house or cluster on-site" in Palestine is recommended

Performance of the reactors during the second year of operation should be assessed.

A post-treatment step is recommended in most cases after UASB- septic tank systems.

Hydrodynamic behavior of the UASB septic tank should be assessed

