

Nutrient recovery from black water from a Dutch perspective

Ellen van Voorthuizen Sanitation Challenge 2008 Wageningen

Objectives sanitation

Source: Schrader, 2006

Main objectives:

- 1. Protection public health
- 2. Protection natural environment

Dutch Sanitation system

Central collection and treatment:

Extensive sewer system

Wastewater treatment systems

Energy consumption: 1 – 2 W/person Costs:

■ € 50 / person.year

Limiting resources:

Phosphorus

Energy

New objective sanitation: 'Sustainability'

Reuse of resources:

Water reuse

Nutrient recovery

Minimize use of resources:

Save energy

Decentral collection and treatment:

- Separation domestic wastewater
- Black water \rightarrow Nutrient recovery ?
- Grey water \rightarrow Water reuse ?

Is it possible to recover nutrients from black water in the Netherlands ?

Research approach I

No direct recovery possible

 \rightarrow Biological treatment of black water

- → Anaerobic MBR
- → UASB + Effluent filtration
- → Aerobic MBR

Independent from central sewer system

 \rightarrow Achieve wastewater discharge standards

- → Nitrogen: 10 mg/l
- → Phosphorus: 1 mg/l
- → Advanced technologies required!

Nutrient recovery and clean water production in ONE step:

Electrodialysis

Reversed osmosis

Ion exchange

- Concentrate quality
- Water quality
- General system performance

Electrodialysis (ED)

Set - up

- 2 cell pairs
- Electric potential 4V
- 24 30 hours

Results

• Water quality Concentrate quality X

X

Reversed osmosis

Set - up

Results

- - Water quality Concentrate quality X
 - Rejection of N and P too low at a recovery of 50% (Conc.factor:2)

- Stirred cell
- Pressure 5 bar
- 15 hours

Х

Organic fouling

Set - up

Results

wetsus

- Water quality
- Concentrate quality ×
- High chemical consumption
- Low exchange capacity

- Synthetic material
 - Cation: NH₄-N
 - Anion: NO₃-N ; PO₄-P
- Natural material
 - Clinoptilolite
- Column experiment

Answer on research question..

Is it possible to recover nutrients from black water in the Netherlands ?

No, because:

- Black water is too diluted:
- \rightarrow Concentration of nutrients difficult
 - Discharge standards for wastewater are difficult to achieve

- Focus on more concentrated streams
- Focus on phosphorus recovery only
- Separate treatment of black water or urine for:
 - Removal of hormones
 - Removal of medicine residues

Sanitation should always focus on:

wetsus

Protection public health!

Type of system depends on:

- Local needs
 - Water
 - Nutrients
- Local circumstances

.

- Economic
- Population density
- Geographic situation
- Social aspects / Culture

