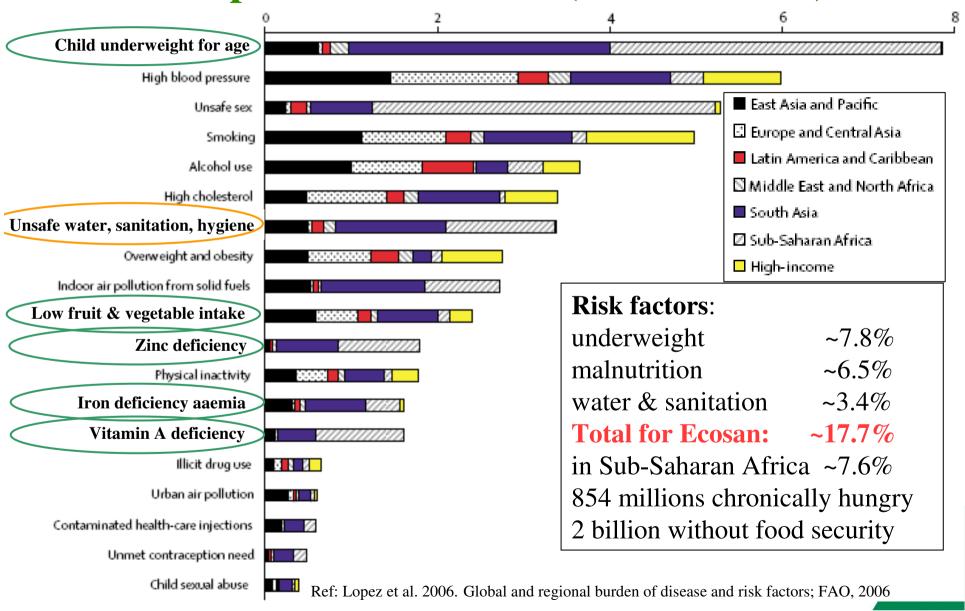
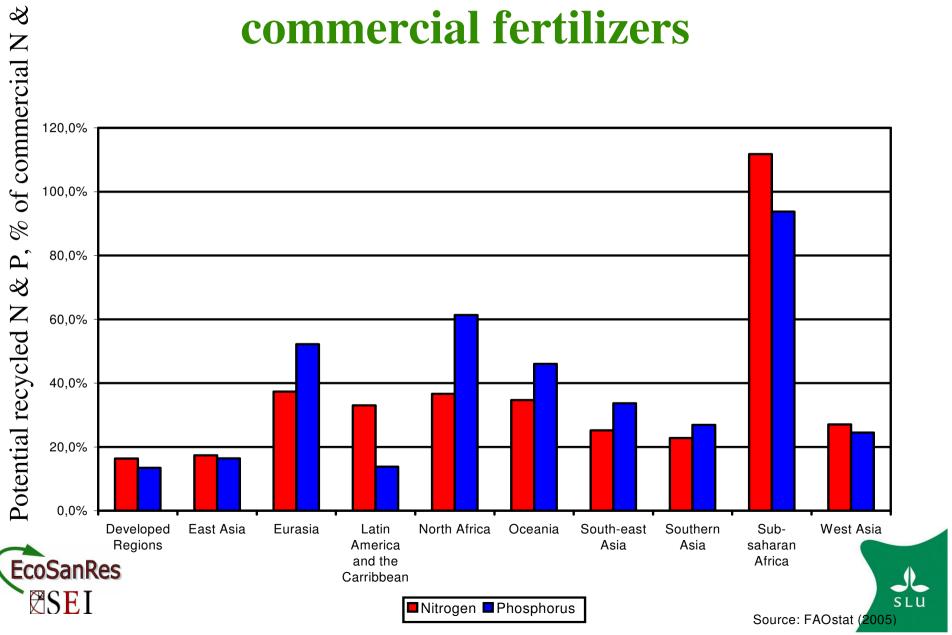
Use of Excreta Nutrients – Opportunities and Knowledge Gaps


Håkan Jönsson

Associate professor


Hakan.Jonsson@et.slu.se

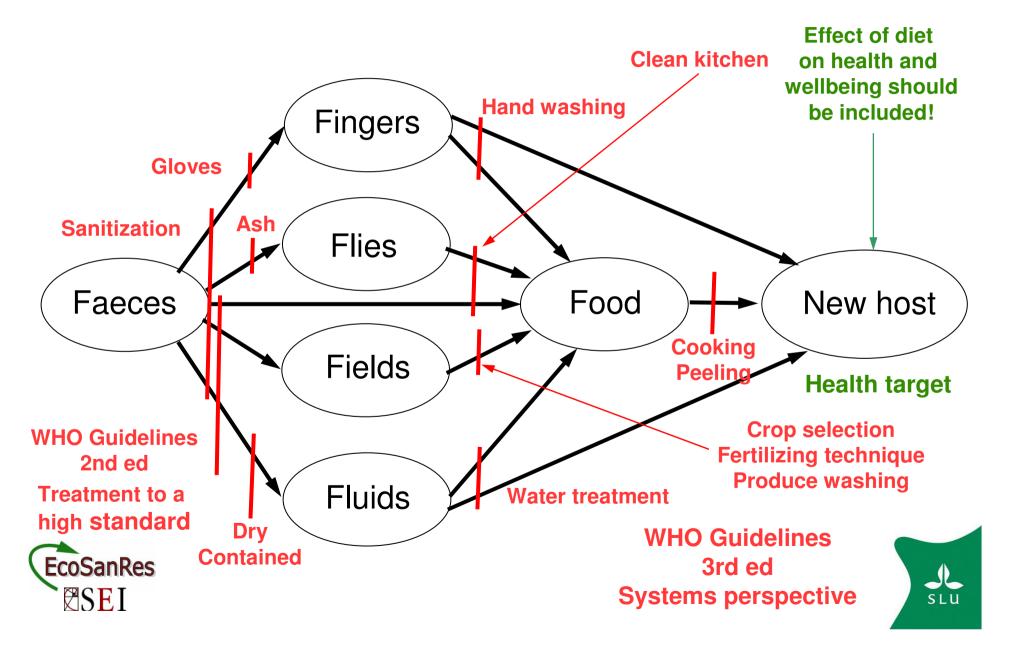
Global risk factors for disease and premature deaths (% of DALYs)

Potential recycled N & P as % of used commercial fertilizers

Also the most poor excrete! Nutrients can pay for the toilet

Ecological Sanitation – an (un)affordable option (D. Mara, April 2005; H. Jönsson et al., June 2005 in Water 21)

- Pour flush toilet 1900 INR
- EcoSan toilet 4200 INR
- Present value during years 2-10: 5070 INR!
 - Excretion by 6 person family (= 4 grownups)
 N 18.2 kg/yr, P 2.3 kg/yr
 - Value 880 INR/year 2005 prices!
- Leverage fertilized products! Fertilizer valued 4000 CF/person, yr gives additional maize crop worth 27500 CF/yr (Dagerskog, pers. com.)
- Can promote toilet as investment, pay-off in productivity (health and crop production)


Good examples needed!

- Ecosan in Kabale, promising example.
- Arbor Loo promising toilet with reuse even cheaper than conventional toilet
- Enter your case study on successful reuse on www.susana.org

WHO guideline – new opportunity

Monitoring and assessment

- Identification of best practice
 System description critical steps total assessment
- 2. Operational monitoring
- 3. Verification of full system

Identification of best practice Example: barriers in wastewater irrigation (IWMI, 2006)

Control measure	Reduction (logs)	Notes
Wastewater treatment	1-6	
Localized irrigation (low crops)	2	Root crops, crops grown above, partially in contact with the soil
Localized irrigation (high crops)	4	Crops where harvested part is not in contact with the soil
Pathogen die-off	0,5-2 per day	Die Die-off on crop surfaces; between last irrigation and consumption. Depends on climate (temperature, sunlight), crop type, etc.
Produce washing in water	1	Washing salad crops, vegetables and fruit with clean water.
Produce peeling	2	Fruit, root crops
Produce cooking	6-7	Immersion in boiling or close-to to-boiling water until ensures destruction.destruction.

Knowledge gap - barriers in source separation systems

Control measure	Notes	
Urine storage	Die-off at different temperatures, pH and concentrations known	
Faecal composting	>50°C, >1 week (WHO, 2006), but thermal composting of faeces with lots of ash/soil requires skill	
Ammonia treatment	Die-off at different temps, pH and concentrations somewhat known	
Faecal storage with ash	>6 months, pH >9, temp >35°C or moisture <25%, (WHO)	
Faecal storage	Other conditions, according to WHO (2006) 1-2 years at 2-20°C, but some ova may survive, >1 yr at 20-35°C.	
Simple resource efficient sanitization	Research on worm composting, mango beetle and dung bug ongoing, as is work on solar latrines/undulating temperatures	
Withholding time 1 month	4-6 log reduction (WHO,2006)	
Non-food crops & crops that are boiled	Maize, sorghum, millet, wheat, cotton, energy	
cosankesvorked	1 log reduction (WHO, 2006)	

Knowledge gap – how to build cheap & sustainable UDD in urban setting

- In-doors
- No smell even without electrical fan
- No flies
- No ash
- Accommodate anal washing
- Accommodate urination standing up

System gap – wet low cost ecosan

- Goal: mass collected =urine + faeces +1 litre flush water per day ≈ 2.5 liter/p,d ≈ 800 liter/p,yr
 Contained until sanitizised
 - + Water as odor lock
 - + Accommodate anal washing
 - + Accommodate urination standing up
 - + Social acceptance
 - 2 * volume of urine handle like urine?

Knowledge gap – sustainable recycling system for urine, faeces, blackwater

In urban setting

- Suitable technology
- Organization
- Driving forces for actors
- Sustainable economy
- Institutional and legal arrangements

Knowledge gap – costs benefit analysis for different ecosan systems

- Private economy
- Societal economy
- WSP study, Richard Schuen, a good start!!

Knowledge gap – effects on gender and equity

- Time saved or more work for women?
- Improved diet and economy for whom?
- Systems accommodating menstruation and pads etc.
- Economic stratification increased or decreased?

Knowledge gap – effect on food security, diet, well-being and health

- Operational monitoring -> die-off in parts of system
- Total system verification epidemiological study
 - Effects on diet, well-being and health MUST be included!!

Knowledge gap – appropriate greywater treatment and reuse

- Simple, easy to maintain systems
- Preferably on-site (ownership, private sector and investment, saving on municipal capacity)

Knowledge gap - user prioritization of sustainable sanitation

- Mobilize the users, the 2.6 million non–served tremendous resource
- Fertilizer and toilet domonstrations
- CLTS Community Led Total Sanitation good inspiration

Summary of opportunities and gaps

- Holistic approach Health Food & Sanitation
- Total health at stake 4-6 x that for safe water & sanitation evaluations of total health
- Safe reuse system,
 - Faecal treatment, simple and robust
 - Systems with several barriers
 - Sustainable urban UDD
 - Wet ecosan
 - Sustainable greywater handling
 - Logistics, organisation, institutions for reuse
 - Gender
 - Economy
- Mobilization of unserved and rest of society

Lots of fascinating work ahead! THANK YOU FOR YOUR ATTENTION

