

GEFÖRDERT VOM

Medikamentenrückstände in Urin und Struvit – Nachweis und Verhalten bei Lagerung, Fällung und Trocknung

Dipl.-Biol. B. Schürmann

Dr.-Ing. D. Montag

Univ.-Prof. Dr.-Ing. J. Pinnekamp

Institut für Siedlungswasserwirtschaft

RWTH Aachen

Verbundstruktur SANIRESCH

Sanitär- und Hausinstallationen: Roediger Vacuum / GIZ

Anlagentechnik: Huber SE

Betrieb und Überwachung: THM / RWTH Aachen

Qualität der Produkte / Urinlagerung: RWTH Aachen / Universität Bonn

Landwirtschaftliche Produktion: Universität Bonn

Akzeptanz: RWTH Aachen / Universität Bonn

Wirtschaftlichkeit: GIZ / Universität Bonn

Internationale Übertragbarkeit: GIZ

Öffentlichkeitsarbeit: GIZ

Gliederung

- Grundlagen der Projektkomponente
- Beschreibung und Ergebnisse der Lagerungs-Versuche
- Medikamente im Fällprodukt Struvit
- Beschreibung und Ergebnisse der Trocknungs-Versuche
- Medikamente im Braunwasser
- Zusammenfassung und Ausblick

Grundlagen der Projektkomponente

- Einsatz von Fäkalien und Urin als natürlicher Dünger
 - Nährstoffquelle für N und P
- Nachweis von 70 % der verordneten Medikamente in Ausscheidungen
- Direkte Verteilung von
 - reinen Pharmaka
 - Metaboliten
 - Transformationsprodukten
 - Konjugaten
- Übergang in die Nahrungskette

Auswahl der Medikamente

- Medikamenten-Screening des gesammelten Urins im GIZ-Gebäude
 - Nachweis mittels LC-MSMS

Medikament	Indikationsgruppe
Bisoprolol, Metoprolol	Betablocker
Carbamazepin	Antiepileptikum
Ibuprofen	Antirheumatikum
Diclofenac, Tramadol (Opoid)	Analgetikum
Sulfadimidin	Sulfonamid (Tiermedizin)
Chloroquin	Malariamedikament

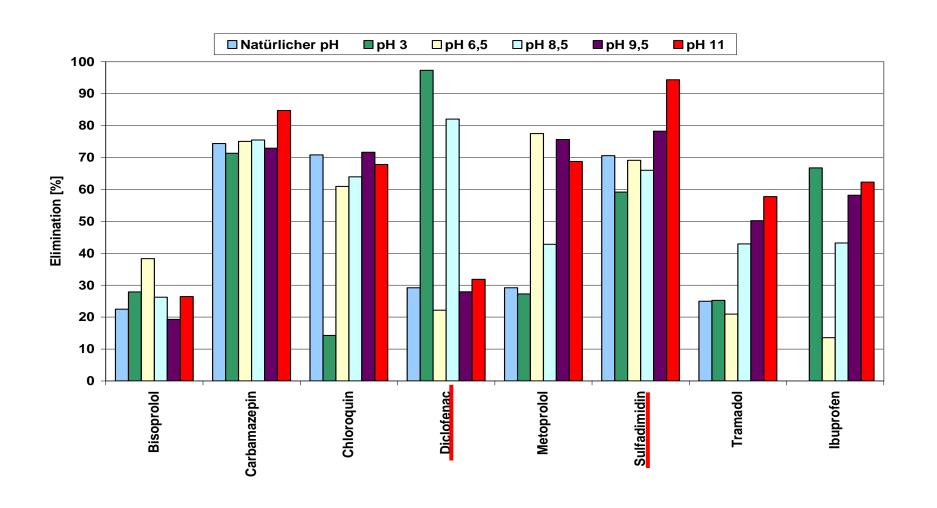
Medikamente in der Umwelt

Wirkstoff	Verbrauchs- menge (2009)	Ausschei- dungs- grad	Umweltbefunde +++ >1 μg/l ++ 0,1 – 1 μg/l + <0,1 μg/l		
	[kg]	[%]	OW	GW	TW
Bisoprolol	8.196	50	+++	++	
Metoprolol	153.125	13	+++	++	
Carbamazepin	64.720	<10 %	+++	+++	+
Ibuprofen	782.378	10	+++	++	+
Sulfadimidin	k. A.		+++	+++	< BG
Diclofenac	91.583	1	+++	+++	+
Tramadol	k. A.	30	+		
Chloroquin	k. A.	70	keine Daten		
OW = Oberflächengewässer, GW = Grundwasser, TW = Trinkwasser					
Literatur:	UBA, 2011; PharmQue, 2009				

Aquatische Toxizität der Medikamente

Medikament	Daphnientest	Fischtest	Algentest	K _{ow}
	EC ₅₀ [mg/l]	LC ₅₀ [mg/l]	EC ₅₀ [mg/l]	[-]
Bisoprolol	90	>100	-	2,20
Metoprolo	438	54	7,3	1,88
Carbamazepin	92	43	27,3	1,76
Ibuprofen	9,06	173	<30	1,41
Sulfadimidin	k.A.	k.A.	k.A.	0,90
Diclofenac	56	214	72	1,56
Tramadol	>10.000	15.400	8.000	3,01
Chloroquin	50	k.A.	k.A.	4,63

Beschreibung des Lagerungs-Versuchs


- Lagerungsversuche mit Urin bei unterschiedlichen pH-Werten
 - Unveränderter Urin
 - pH 3
 - pH 6,5
 - pH 8,5
 - pH 9,5
 - pH 11

- Dotierung von 100µg/l pro Medikament
- Dunkel bei 20°C

Ergebnisse des Lagerungs-Versuchs

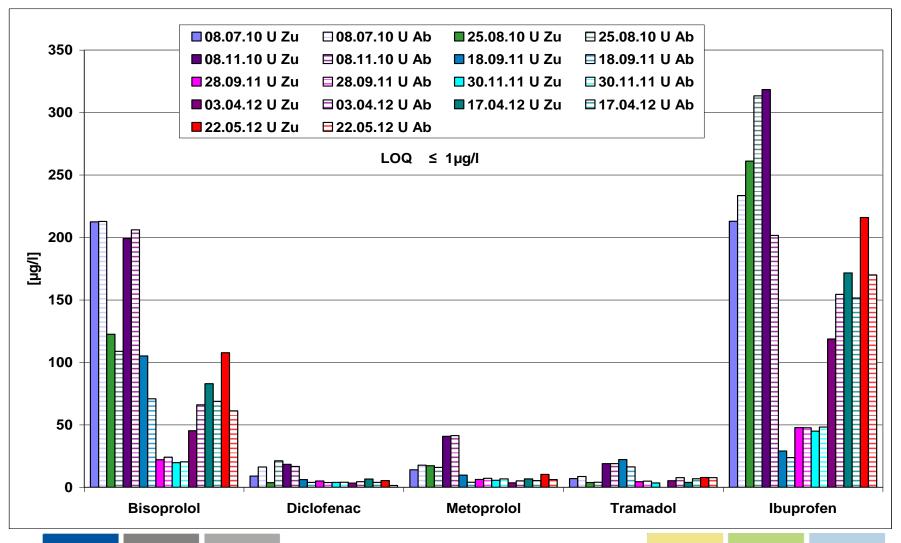
Ergebnisse des Lagerungs-Versuchs

Pharmaka	Natürl. Urin	pH 3	pH 6,5	pH 8,5	pH 9,5	pH 11
Bisoprolol	-	-	+ -	-	-	-
Carbamazepin	+	+	+	+	+	(++)
Chloroquin	+	-	+	+	+	+
Diclofenac	-	++	-	++	-	-
Metoprolol	-	-	+	+-	+	+
Sulfadimidin	+	+ -	+	+	+	++
Tramadol	-	-	-	+-	+-	+ -
Ibuprofen		+	-	+ -	+ -	+

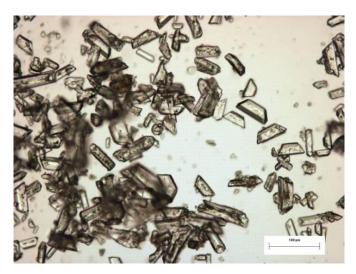
Legende	<10%	<30 %	30-60%	60-80%	>80%
		-	+ -	+	++

Bewertung des Lagerungsversuchs

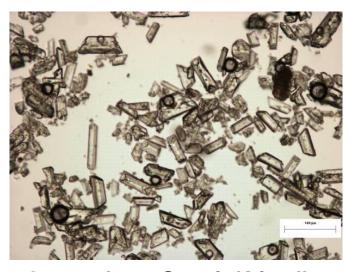
- Veränderung des pH-Wertes hat keine vollständige Elimination aller zugesetzten Medikamente zur Folge
- Verbreitung der Medikamente in der Umwelt nicht ausgeschlossen
- Nährstoffe des Urins müssen anders genutzt werden



Medikamente im Fällprodukt Struvit



Medikamente bei der Fällung

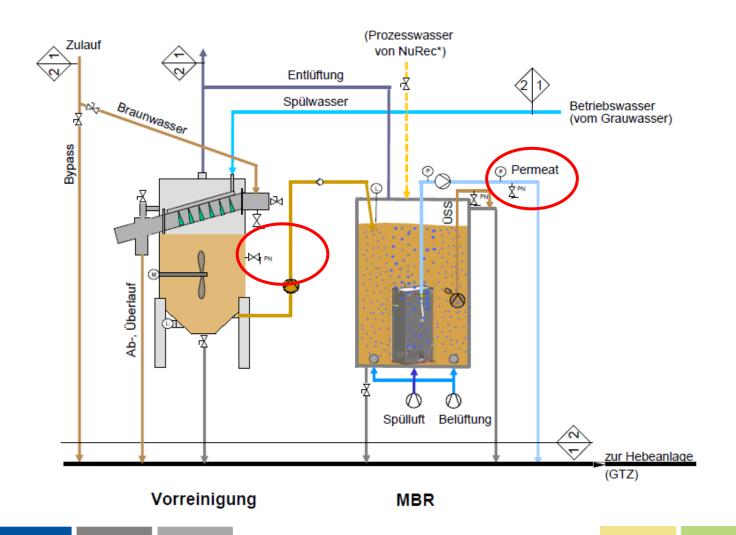


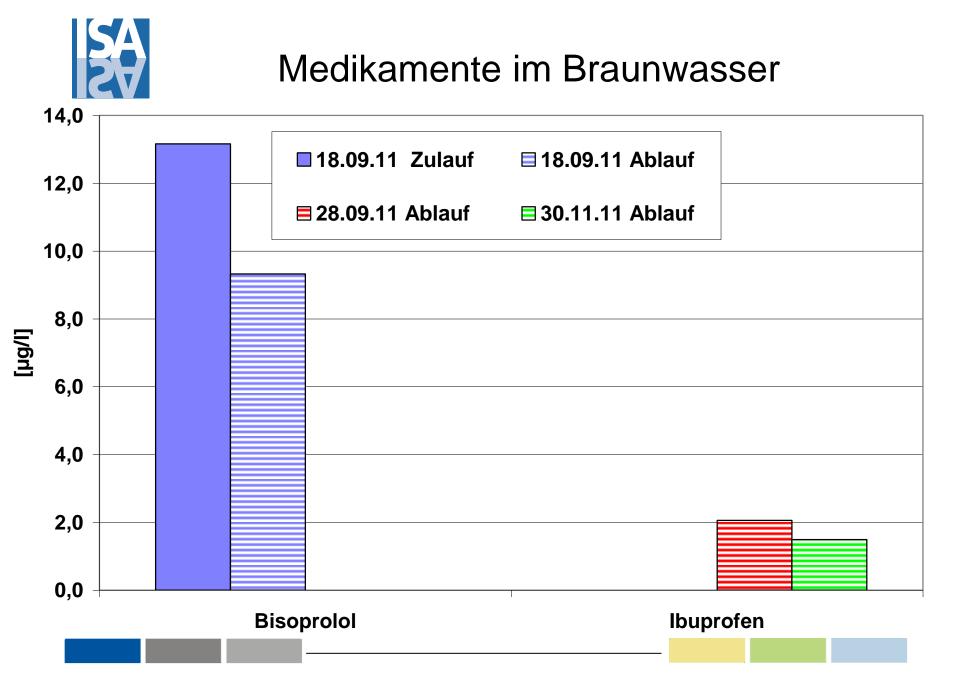
Medikamente im Struvit

Ungewaschene Struvit-Kristalle

Gewaschene Struvit-Kristalle

- Keine Einlagerung von Medikamenten
 - Quantifizierungsgrenze 1µg/kg
- Keine Verbreitung von Medikamenten bei der Düngung


Beschreibung und Ergebnisse der Trocknungsversuche


- Trocknung von Struvit bei 30°C, 50°C, 70°C und 105°C
- N:P:Mg = 1:1:1 in reinem Struvit $(NH_4)Mg[PO_4] \cdot 6 H_2O$

	Molverhältnisse					
Temperatur	Stickstoff Phosphor Magnesiur					
30°C	0,86	1,00	1,15			
50°C	0,84	1,00	1,14			
70°C	0,21	1,00	1,16			
105°C	0,29	1,00	1,17			

Medikamente im Braunwasser

Zusammenfassung

- Medikamente werden mit den Ausscheidungen von Mensch und Tier in die Umwelt entlassen
- Direkte Anwendung von Urin und Fäkalien in der Landwirtschaft führt zu einer Verbreitung von Medikamenten
- Überführung von natürlichem Urin in ein rieselfähiges Düngemittel vermindert die Gefahr einer Umweltkontamination mit Medikamenten
- Trocknung des Produktes sollte bei Temperaturen erfolgen, die N-Verluste ausschließen.

Ausblick

- Mineralische N- und P-Dünger lassen sich durch ein unschädliches Produkt ersetzen
- Schonung der endlichen P-Reserven

Danksagung

Diese Arbeit wurde durch das BMBF (Bundesministerium für Bildung und Forschung), Fördernummer 02WD0949 unterstützt. Die Autoren danken dem BMBF für diese Förderung.

