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ABSTRACT 

Ensuring safe, adequate, effective and sustainable sanitation is a major global challenge, especially in 

developing countries. This project is part of the ‘Reinvent the Toilet Challenge’ (RTTC) which focuses 

on the development and implementation of new and sustainable technologies for processing human 

excreta from on-site sanitation systems. This project investigated the drying kinetics of pit latrine sludge 

by convective drying using different air properties and analysed the resulting thermal properties and 

nutrient content of the sludge.  

The drying experiments were conducted at air temperatures of 40 °C, 60 °C and 80 °C; relative 

humidity of 5 %, 15 % and 25 %; effective air flow velocity of 0.03 cm/s, 0.06 cm/s and 0.12 cm/s. The 

drying curves obtained indicated two distinct stages during the drying process, a constant rate period 

and the falling rate period. It was observed that the drying kinetics were greatly affected by temperature, 

relative humidity and sample thickness but the effect of air flow rate seemed negligible in the range of 

study. The effective moisture diffusivity was found to range between 7.8×10-8 and 2.1×10-7 m2/s. The 

relationship between the effective moisture diffusivity and temperature was described well using the 

Arrhenius type equation. The concentration of nutrients was no affected by the conditions except for 

ammonia and nitrates which decreased greatly. The thermal conductivity of the wet sludge, of moisture 

content 79 % (wb), was 55 W/m.K and it showed a linear relationship with the moisture ratio of the 

sludge sample. The average thermal conductivity of the final dried product was 0.04 W/m.K. Heat 

capacity also showed great dependence on the moisture content of the sample but it was not a linear 

relationship. The calorific value of the dried samples was around 13 MJ/kg. The drying curves were 

regressed against common empirical drying models and the Page model described the experimental data 

well of the models analysed, yielding a R2 greater than 0.996. 
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1 INTRODUCTION 

Ensuring safe, adequate, effective and sustainable sanitation is a major global challenge, especially in 

developing countries. The global sanitation community has made great efforts in trying to resolve the 

sanitation problem, hence the provision of basic sanitation was selected as one of the key issues in the 

United Nations Millennium Development Goals  as well as the Sustainable Development Goals (SDGs) 

implemented in 2016 (Sachs, 2012). A report from the Joint Monitoring Programme for Water Supply 

and Sanitation, facilitated by the World Health Organisation (WHO), estimated that 2.1 billion people 

had gained access to an improved sanitation facility since 1990. However in the same report, in 2015, 

an estimated 2.4 billion people globally had no access to improved sanitation facilities, with over 946 

million people practising open defecation, most of which reside in low and middle-income countries 

(WHO, 2015). The majority of the world’s population, most of which are in Africa and Asia, do not 

rely on a piped sewer system but on on-site sanitation facilities such as septic tanks, pour-flush toilets, 

pit latrines and ventilated improved pit latrines. In most countries, ventilated improved pit latrines (VIP) 

have been deemed as the minimum acceptable level of sanitation and a fundamental human right 

(Langergraber and Muellegger, 2005, Bakare et al., 2012).  

South Africa also faces the sanitation challenge, like the rest of the global community, as it is difficult 

to satisfy the sanitation needs for all residents using the conventional centralised sewerage system 

(Austin and Van Vuuren, 2001). In addition, increased urbanisation in major cities has resulted in the 

emergence of numerous informal settlements where sanitation facilities are few and overloaded or non-

existent. Therefore, most municipalities within the country have adopted and implemented on-site 

sanitation systems. Over 3 million conventional pit latrines, septic tanks, Urine Diversion toilets (UD 

toilets) and, Ventilated Improved Pit latrines (VIP) have been built across most of the rural and the 

densely populated peri-urban areas of the country in order to address the sanitation problem in the 

country (Mnisi, 2011, Austin and Van Vuuren, 2001). Much attention has been placed on the building 

and provision of new toilets but not enough on their maintenance. Most of the toilets that were initially 

built in rural and peri-urban settlements are either full or are reaching their full capacity, which present 

a local health hazard leading to the need for them to be emptied (Still et al., 2005).  

The major challenge facing most municipalities is finding an effective and sustainable faecal sludge 

management for the disposal of the sludge emptied from the full pits. Faecal sludge is normally dumped 

into the environment (landfilling/composting) or sent to a wastewater treatment plant for processing 

(Rose et al., 2015, O’Riordan, 2009, Arlabosse et al., 2004). These practices emanate from the general 

misperception that faecal sludge is waste without any value, whereas it has great valorisation potential.  

Most of the nutrients needed for crop production are found in excreta. Therefore, the nutrients in faecal 

sludge can be recycled for agricultural use, which could consequently reduce the use of chemical 
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fertilizers, usually produced from non-renewable resources (Rose et al., 2015, Malkki, 1999, Sharma 

Sunil, 2013). While faecal sludge use is primarily focused for agricultural applications, other products, 

such as biogas, represent potential revenue generating sources that have not yet been implemented 

(Langergraber and Muellegger, 2005, Muspratt et al., 2014a). Research has been conducted to assess 

the feasibility of faecal sludge as a fuel, a product that could offer an environmentally and financially 

beneficial solution for disposal-oriented faecal sludge management, while replacing the energy from 

fossil fuels which are in fast depletion (Fytili and Zabaniotou, 2008, Rose et al., 2015, Muspratt et al., 

2014b). 

Prior to faecal sludge reuse, drying is a critical and necessary treatment process. Traditionally, solar 

drying beds were employed in most treatment plants to dry sludge, mostly from wastewater treatment 

facilities. The major drawbacks facing this method is the large area of land required as well as the long 

drying time to attain the desired moisture content. As an alternative, thermal drying has gained 

popularity as it requires less surface area to process the same amount of sludge than drying beds 

technology, leading to more compact units, and additionally the process occurs faster. Thermal drying 

has been successfully implemented over the years in the drying of sludge from wastewater treatment 

facilities (Sapienza, 2005, Tao et al., 2005, Arlabosse et al., 2004).  

 

1.1 Purpose of the study 

The Pollution Research Group at the University of KwaZulu-Natal is among the grantees of the Bill & 

Melinda Gates Foundation (BMGF) initiative projects known as the ‘Reinvent the Toilet Challenge 

(RTTC), which focuses on the development and implementation of new sustainable technologies for 

the processing of human waste from on-site sanitation systems. The principle objective of the challenge 

is to develop a cost effective and self-sustaining sanitation process by developing a toilet that can 

integrate and utilize different excreta waste streams and recover valuable constituents such as energy, 

sterilised fertiliser and portable water. The toilet must cost less than 0.05 dollars per day per individual, 

should be out of the electric and sewage grid and it should be culturally accepted (Woolley et al., 2014, 

McCoy et al., 2009, Elledge and McClatchey, 2013).  

Grantees from the RTTC, as well as other researchers in the sanitation field, have carried out research 

to evaluate resource recovery from innovative faecal sludge treatment processes to generate revenue 

that could make the sanitation system sustainable. Some of the proposed processes include gasification, 

combustion, pyrolysis, hydrothermal carbonization, anaerobic digestion and composting. Figure 1-1 

shows a flowchart detailing the processing of various excreta streams and the possible end uses of the 

by-product. Some of grantees potentially interested in the outcomes from this study are tabulated in 

Table 1-1. In this light, drying of faecal sludge is a process of significant interest and relevance. It is on 

this basis that the objectives for the work were consolidated. 
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Table 1-1: Grantees of the RTTC project in need of data regarding the drying characteristics 

and thermal properties of faecal sludge 

Grantee Proposed technology 

Research Triangle institute Electrochemical disinfection, combustion, auger separation of 

liquid and solid heat conversion into electricity 

Shijiazhuang University of 

Economics 

Screw conveying and solar drying and disinfection 

University of Toronto Belt drying, sand filtering, smouldering and ultraviolet 

disinfection 

Columbia University Production of bio-diesel  

Janicki Industries Electricity producing facility that uses faecal sludge as a fuel 

source for steam generation  

 

The understanding, characterisation and modelling of faecal sludge drying kinetics are essential for the 

design, operation, control and optimisation of the drying process. Nevertheless, the information 

pertaining to the drying of faecal sludge from on-site sanitation is not readily available in literature, thus 

forming the basis of this particular study. 

 

1.2 Objectives of the study 

This project investigated the drying characteristics of faecal sludge using a custom designed drying rig. 

The experimental rig enabled the determination of the drying kinetics at varying drying temperature, 

flow-rate and relative humidity. In addition, the chemical and physical properties of the dried faecal 

sludge were analysed to ascertain the effect of drying on the product. 

The objectives of the present study include the investigation of the following parameters during 

experiments of convective drying of faecal sludge from VIP latrines:  

1. Drying kinetics at varying air temperature, air flow-rate, air humidity and different sample 

geometry and size. This enables the calculation of the effective diffusivity and testing existing 

empirical models on faecal sludge convective drying.  

2. Thermal properties of faecal sludge, namely thermal conductivity, caloric value and heat 

capacity, as a function of the drying conditions. 

3. Nutrient content of the dried faecal sludge, namely potassium, total phosphorus, nitrates, 

magnesium, calcium, as a function of the drying conditions. 
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Figure 1-1: Flowchart indicating the possible uses of excreta (http://prg.ukzn.ac.za) 
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1.3 Dissertation outline 

 INTRODUCTION  

This section outlines the context and the motivation to perform the present study. The objectives 

of this work are indicated.  

 

 LITERATURE REVIEW  

This section is divided into 6 sub categories. Section 2.1 introduces the general sanitation 

concepts and the existing systems. Section 2.2 describes in detail the ventilated improved pit 

(VIP) latrines which is the sanitation system of concern in this project. The faecal sludge 

content of the VIP latrines is described, as well as the collection and disposal methods of the 

waste. Sections 2.3 and 2.4 focus on the drying theory, paying particular attention to the 

convective heat and mass transfer due to its relevance to the present project. The empirical 

modelling approaches are also discussed. Section 2.5 summarises the previous works conducted 

on drying of animal manure and the effects on the nutrient concentration. 

 

 MATERIALS AND METHODS  

This section outlines the experimental apparatus and methods employed in this project. It also 

gives a description of the parameters employed for data analysis.  

 

 RESULTS AND DISCUSSION  

The results obtained are presented in this section and discussed. The main trends deduced from 

the experimental results are highlighted and are compared to literature data.  

 

 CONCLUSION AND RECOMMENDATIONS 

The results obtained were summarised and their implication in the sanitation field, particularly 

in the context of the RTTC, were discussed in this section. The limitations of this study were 

presented and possible future researches on this topic were suggested.  
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2 LITERATURE REVIEW 

The previous chapter highlighted the aims and objectives of this study. This chapter is 

aimed at outlining the relevant literature required to achieve the desired goals. The first 

section of this chapter briefly introduce sanitation systems and the management of faecal 

sludge from VIP latrines. Thereafter it focuses on drying theory which relates to the 

drying process and kinetics. Lastly, the effect of drying animal manure is reviewed. 

2.1 Sanitation systems 

There exist various types of sanitation facilities which are employed depending on the financial, social 

and geographical context. They can be broadly classified into two distinct categories, on-site and off-

site sanitation facilities (Sharpe, 2010).  

Off-site sanitation 

This term is also referred to as centralized sanitation system because the waste is transported for 

processing from its generation point to a distant wastewater treatment facility through sewage network 

systems. This sanitation system is particularly common in urban areas of developed countries (Sharpe, 

2010). Conventional off-site sanitation requires high amounts of water and energy used to transport 

excreta from the household toilet to the treatment plants, therefore it is neither an ecological nor 

economical solution in both industrialized and developing countries (Diaz and Barkdoll, 2006).  

On-site sanitation 

The majority of the world’s population relies on on-site sanitation. This system is characterized by the 

containment of the human excreta at the proximity of the toilet. The various types of on-site sanitation 

methods that are available include: pit latrine, ventilated improved pit (VIP) latrine also known as a 

Blair toilet, septic tanks, unsewered public ablution blocks and urine diversion toilet (UD). The VIP 

latrines are considered as the basic minimum level of sanitation that a person should have access to by 

the South African government (Bakare, 2014). This is the main reason this project focuses particularly 

on the waste from the VIP latrines.  

 

2.2 Ventilated improved pit (VIP) latrines 

VIP latrines were designed in order to improve conventional pit latrines by reducing foul odours and 

the number of flies within the toilets. VIP latrines consist of an enclosed brick superstructure with a 

door, a pit with a concrete slab cover and a ventilation pipe, as shown in Figure 2-1b. The ventilation 

pipe serves to eliminate the malodourous air in the pit and prevent flies due to a fly screen that is located 
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at the end of the pipe (Bester and Austin, 2000). Human excreta are collected inside the pit and the 

liquid fraction leaches away into the underground whilst the bulk solid decomposes (Nwaneri, 2009).  

  

(a) Traditional pit latrine (b) Ventilated Improved Pit latrine (VIP) 

Figure 2-1: Diagrams of a conventional pit latrine and a VIP toilet (Brikké and Bredero, 2003) 

 

2.2.1 Description and characterisation of the contents of VIPs 

The contents of VIP latrines comprise mainly of raw or semi degraded human excreta (faeces and urine), 

anal cleansing material and a wide variety of trash introduced in the pits by the toilet users, such as 

plastics, paper and clothes. Human faeces contain a large quantity of organic matter in comparison to 

urine. Nwaneri (2009) characterised and analysed the biodegradability of the organic material in human 

faeces and it was observed that 80 % of faeces contained biodegradable organic matter whilst the 

remainder was inert material.  

Human excreta is rich in nutrients that are not assimilated during body metabolism. These nutrients can 

be utilised to supplement the synthetic fertilisers that are manufactured from fossil fuels and 

phosphorus. However, mismanagement or careless disposal of faecal sludge can have a detrimental 

effect on the environment as excess nutrients can lead to eutrophication, contamination of underground 

water and algal blooms in surface waters. Faecal sludge comprises of water-soluble and insoluble 

nutrients, most of which are essential for the proper growth of plants. These nutrients comprise of the 

main macronutrients which are nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and 

magnesium (Mg). Vinnerås et al. (2006) during their study on the composting of human excreta 

observed that urine contained the largest proportion of the total nutrients. They reported that urine 
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contains nearly 80% of the nitrogen (N), 50% of the phosphorus (P) and approximately 60% of the 

potassium (K). The amount of plant nutrients excreted in urine per person per year has been reported 

by Chaggu (2004) as 2.5 - 4.3 kg nitrogen, 0.4 - 1.0 kg phosphorus and 0.9 - 1.0 kg potassium. 

Concerning the nutrients in faeces, approximately 50% of nitrogen and most of the potassium in fresh 

faeces are soluble in water, while phosphorus is primarily found as calcium phosphate particles that 

have low solubility in water (Malkki, 1999, Niwagaba, 2007). Nutrients are released slowly from faeces 

than from urine. Niwagaba (2007) and Jönsson et al. (2004) explained this behaviour by highlighting 

that a large proportion of the nitrogen and phosphorus has to be degraded before the nutrients become 

water soluble and available to plants. The composition and characteristics of faecal sludge from VIP 

toilets are presented in Table 2-1.  

Table 2-1: Characteristics of faecal sludge from VIP latrines 

Parameter Units References 

Gaillard 

 (2002) 

Lopez Zavala et al 

(2002) 

Almeida et al 

(1999) 

Moisture content % - 81.1  79.2  

Volatile solids % % - 84.4  - 

Total COD  mg/mg 0.57  1.45  1.38  

Dissolved COD  mg/mg 0.09  - - 

Suspended COD  mg/mg 0.46  - - 

Volatile fatty Acids  g COD/ l 8.46  - 1.5  

Total Nitrogen  mg/g 17.82  60.1  - 

NH3- mg/g - 3.4  7.2  

NO3
- -  mg/g - 0.03 0.14  

pH  - 7.5 - 

SO4
2-  mg/g - 1.1  - 

Cl-  mg/g - 4.2  - 

Ascaris eggs  (no./l) 2000-6000   

Helminthes eggs  (no./l) 20 000 – 60 000   
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The composition of fresh excreta (urine and faeces) and faecal sludge collected from VIPs latrines differ 

greatly. Fresh excreta show higher values than the contents of VIPs for most parameters, as seen in 

Table 2-2. Research conducted by Nwaneri (2009) revealed that the organic matter in faecal sludge 

undergoes a certain degree of biological decomposition within the pit latrine which reduces the chemical 

oxygen demand (COD). This stabilisation process produces carbon-based molecules that are not readily 

degradable and consists of more stable, complex molecules such as cellulose and lignin thus lowering 

the oxygen demand. 

In addition, another key factor that causes this marked difference is the diet, health and age of 

individuals as well as the employment mode of the toilets. Additional material, such as food residues, 

wash water and wiping instruments, are often disposed into the pits thereby changing the sludge 

properties. (Nwaneri, 2009).  

Table 2-2: Comparison between the contents of faecal sludge from VIP latrines and fresh 

excreta (Nwaneri, 2009)  

Characteristics Units  Fresh excreta Faecal sludge 

BOD  [g/cap day] 45 8 

TS  [g/cap day] 110 90 

TKN  [g/cap day] 10 5 

COD  [mg/l] - 20 000 – 50 000 

 

2.2.2 Collection and Disposal of Faecal Sludge 

Management of faecal sludge in an economically and environmentally acceptable manner is a challenge 

for practitioners. The proper understanding of the characteristics of the waste is essential to identify the 

most suitable disposal routes (Bakare, 2014, O’Riordan, 2009, Rose et al., 2015). Depending on the 

conditions of temperature, moisture content and pH, the excreta could have undergone considerable 

decomposition and the pathogen activity could have significantly been reduced after 2 years of storage 

so that the excreta can be manually handled. 

Generally, two pit emptying methods are employed in removing excreta from pit latrine, i.e. by 

mechanical operating devices or by manual emptying. In the former option, a suction or pumping device 

is employed into the pit. Manual emptying involves people removing the excreta with shovels rakes and 

bins. Both methods of pit emptying are shown in Figure 2-2 
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(a) Mechanical emptying (b): Manual emptying 

Figure 2-2: Photographs showing the manual and mechanical emptying 

Once the sludge from the pits has been removed, it needs to be transported and treated. It must be 

ensured that the faecal sludge disposal route does not contaminate the environment and affect public 

health. Part of the difficulty in implementing proper faecal sludge management is related to the 

misconception of considering faecal sludge as waste and not as a resource. Therefore, finding innovative 

approaches for resource recovery is a major step towards solving the sanitation problem. Diener (2014) 

stated that if faecal sludge management systems are designed with the goal of resource recovery, viable 

business models could emerge. Different valorization routes proposed by various authors include use 

as a fuel for burning (Muspratt et al., 2014a, Werther and Ogada, 1999), production of biogas from 

anaerobic digestion, protein derivation use for animal feed (Čičková et al., 2015, Vinnerås et al., 2006), 

and use as an organic fertilizer or soil conditioner (Moe and Rheingans, 2006, Mihelcic et al., 2011, 

Niwagaba, 2007, Malkki, 1999). 

2.2.2.1 Use as a biofuel 

Currently, the use of faecal sludge as a biofuel is in a premature phase and it is much less utilised 

compared to sewage sludge from waste water treatment plants (Muspratt et al., 2014a). Stasta et al. 

(2006) stated that a third of the fuel required to power a cement kiln can be supplemented using dried 

sludge. Considerable strides have been made to show the faecal sludge fuel potential. Muspratt et al. 

(2014a) reported that the average calorific value of faecal sludge obtained from the cities of Kumasi 

(Ghana), Dakar (Senegal) and Kampala (Uganda) was 17.3 MJ/kg. Zuma et al. (2015) found the average 

calorific value of the sludge from VIP toilets located in the community of Bester, in Durban, South 

Africa, to be 14.3 MJ/kg. These values are comparable to the energy content of some common fuels as 

illustrated in Table 2-3. 
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Table 2-3: Calorific values of common industrial fuel  

Fuel  Calorific value MJ/kg 

Coffee husks 16 

Firewood 16 

Sawdust 20 

Charcoal 28 

Used engine oil 33 

Diesel 42 

 

2.2.2.2 Production of animal protein  

Faecal sludge can be used as a medium to grow insect larvae that can be a source of protein to animals. 

Faecal matter is used to feed black soldier fly larvae, Hermetia illucens L, to transform the organic 

waste into valuable products. This process reduces the dry matter by up to 80 % and produces a nutrient-

rich by-product in the form of the last larval stage, the pupae. Their protein content, approximately 

about 40 %, makes them a valuable alternative to aquaculture, chicken farms, and frog farms with 

respect to other forms of municipal organic waste (Čičková et al., 2015). Black soldier flies are currently 

being bread commercially in Accra, Ghana and Kampala, Uganda for aquaculture (Diener et al., 2014). 

2.2.2.3 Biogas production 

Biogas is produced from the decomposition of biomass in a biological process. Bio-digesters are 

commonly used to generate biogas from biodegradable waste and sewage sludge. There exist small-

scale bio-digesters using faecal matter as feedstock and the gas produced is used for cooking. California 

University of Technology (Caltech) are currently researching into another innovative hydrogen gas 

production method from black water (faeces, urine and water). Their toilet prototype oxidizes black 

water via an electrochemical process to produce hydrogen. This process is powered by photovoltaic 

solar energy (Goodier, 2012). Diener et al. (2014) observed that the faecal matter from public latrines 

have a greater potential for biogas production as it would have undergone less stabilization due to 

shorter sludge retention times as compared to household pit latrines. 

2.2.2.4 Agriculture  

Research on excreta-based fertilizers has gained attention as a viable alternative to the current methods, 

which are expensive or have negative impact on the environment. It is estimated that around 60-70 % 

of nutrients discharged from the fields ends up in human excreta (Malkki, 1999). This gives a reason to 

use human excreta, as an alternative to artificial fertilizers, to provide the nutrients necessary for plant 
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growth. As observed in Table 2-4, human waste is rich in the three essential nutrients nitrogen, 

phosphorus and potassium. Faecal matter can be applied in agriculture for land spreading or 

composting.  

Studies have shown that organic soil conditioners such as faecal sludge, possess the following 

advantages in comparison to synthetic substances (Henley et al., 2011, Sapienza, 2005):  

 slow release of nitrogen;  

 increases the water retention capacity of sandy soils;  

 increases aeration and drainage of loamy and clay soil;  

 increases the nutrient retention capacity of soils. 

Human excreta is richer in major nutrients in comparison to other animal manure that are often used as 

fertilizers, as seen in Table 2-4.  

Table 2-4: Comparison of nutrients from different excreta sources and inorganic fertilizers 

(Montangero and Strauss, 2002) 

 

Source 

 Elemental composition 

N P K Ca Mg 

Fresh manure composition (% wet mass) 

Poultry a  0.5 - 1.1 0.8 - 1.2 0.4 0.2  

Cattle  b 2.5 0.3 0.5 0.3 0.1 

Sheep  b  0.5 0.8 0.2 0.3 

Horse b  0.3 0.6 0.3 0.1 

Swine b  0.5 0.4 0.2 0.0 

Goat c  0.4 4.6 0.7 1.2 

Inorganic fertilizer composition (%) 

Rock phosphate d  11 - 17 - 25.0 - 

Single superphosphate d  7 - 10 - 20.0 - 

Triple superphosphate d, e  19 - 23 - 13.0 - 

Potassium chloride d, e  - 26 – 27   

Dolomite d    22.00 19.0 

data source: a (Ghosh et al., 2004),  b (Ecochem.) ,  c (Mnkeni and Austin, 2009),  d (Silva, 2000),  e(Koenig and Rupp, 1999),   

f  (Montangero and Strauss, 2002) 
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2.3 Concept of drying 

Drying is a chemical engineering unit operation which is commonly used for various applications and 

it is generally defined as the removal of water or any other solute from the solid. Drying is an intricate 

transient process involving coupled momentum, heat and mass transfer. Physical, chemical or 

biochemical transformations may occur during the drying process, resulting in changes in texture, 

colour, odour and other properties of the solid product (Perry et al., 2008, Mujumdar, 2006).  

2.3.1 Drying technologies for sludge treatment 

Drying reduces the costs associated with sludge storage, transportation, packaging and retail as the 

process reduces the mass and volume (Arlabosse and Chitu, 2007). It also increases the lower calorific 

value through the decrease of the moisture content of the sludge, consequently turning the material into 

a suitable combustible. In addition to the aforementioned, drying at high enough temperatures (above 

80 °C), makes sludge hygienic by killing pathogenic organisms (Henley et al., 2011). In their studies 

on Ascaris eggs, Aitken et al. (2005) and Popat et al. (2010) reported the inactivation of the organisms 

was greater than two log reductions achieved within 2 h at a temperature of 50°C. Thomas et al. (2015) 

reported the inactivation of Ascaris using a conical-augur device using temperatures of 70 °C and a 

residence time of 6 seconds. 

2.3.1.1 Solar drying 

Solar drying is usually performed in a greenhouse with the structures constructed on a concrete basin 

and the walls in a transparent material to allow solar radiation to enter.  The influencing parameters on 

the process are the solar thermal energy flux received, the air temperature and the ventilation rate, as 

well as the initial dry moisture content of the sludge. Bennamoun et al. (2013) reported drying times as 

long as 20 days, but solar drying is an economic method when compared to the other process as it 

utilises a renewable source of energy. However, the downside to this drying method, apart from the 

long drying times, is the inefficiency to eliminate pathogens (Chen et al., 2002). The radiation of short 

electromagnetic wave lengths, such as the ultraviolet (UV) light, is blocked by the cover, consequently 

reducing the degree of pasteurisation, especially for coliforms sensitive to UV light. In addition, other 

disadvantages associated with solar drying are the high surface area required to process large amounts 

of sludge and the need to mechanically turn the sludge during the process. 

2.3.1.2 Radiative drying (Microwave and Infrared) 

Radiative drying can be distinguished into two sections, microwave and infrared drying. Microwaves 

have a wavelength between 0.025 to 0.75 microns that fall between radio and infrared waves. It has 

been reported that when microwave heating is used, approximately 75 % less energy is required in 

comparison to thermal heating (Thiagarajan, 2008). During microwave drying, the microwave 



 

14 

 

electromagnetic radiation penetrates within the solid and elevates the solid temperature by exciting the 

dielectric molecules (such as water). This provides the energy necessary to remove the moisture in the 

solid. Microwave drying has been commonly used to dry food as it preserves the texture and taste 

(Thiagarajan, 2008). 

In the case of infrared (IR) drying, the surface of the solid is heated by exposure to the IR radiation. IR 

can penetrate a certain depth in the solid, but not entirely. After the surface is heated, there is the 

classical mechanism for internal heat transfer occurring within the solid. An example of IR drying for 

faecal sludge drying is the Latrine Dehydration and Pasteurisation (LaDePa) machine in Durban, South 

Africa. Prior to drying, the LaDePa machine mechanically separates detritus from the waste and 

pelletises the sludge. In the drying chamber, the pelletized sludge is initially dried by hot air, then by 

medium-wave infrared radiators. The LaDePa machine is shown in Figure 2-3. 

 

Figure 2-3 Schematic of the LaDePa machine 

 

2.3.1.3 Freeze drying / Lyophilisation 

Freeze drying or lyophilisation employs the phenomenon of sublimation (primary drying) in 

conjunction with desorption. Sublimation is the direct transition of a substance in its solid form into a 

gaseous form. In the case of water, sublimation occurs when the temperature and vapour pressure of 

the solid are below the triple point (611.2 Pa and 0°C). 
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This drying method is commonly applied in the manufacture of pharmaceutical and biological 

substances that are denatured or deactivated by heat (thermolabile material) or materials that are 

unstable in aqueous solutions for prolonged storage periods, but stable in the dry state. Freeze drying is 

also implemented in the food industry to produce dehydrated coffee, soups and meals for consumers in 

the supermarket. This method has also been tested for poultry manure drying (Sistani et al., 2001, Dail 

et al., 2007).  

2.3.1.4 Hot air convective drying 

This method is a form of thermal drying in which the sensible heat required to elevate the temperature 

of the wet solid is supplied by means of hot air convection. The heated air flows through the wet material 

and acts as a carrier or sweep gas to remove the moisture evaporated from the material. The operating 

parameters that influence the drying rate in this method are the air temperature, humidity and velocity. 

Heating up air to the desired temperature requires a significant amount of energy and therefore to ensure 

the economic sustainability of the processing technology, this method often implements exhaust gas 

where no further heating is required. This method of drying is mainly utilitised in the thermal drying of 

wastewater sewage sludge in which the commonly used driers are the belt dryer, drum dryer and 

fluidized bed. However, there is a gap in literature detailing the convective drying of sludge from onsite 

facilities, hence the focus of this study.  

 

2.3.2 Moisture in solids 

Wet solids can be split into two basic groups in accordance to their drying behaviour (Henley et al., 

2011): 

1. Granular / crystalline solids – these tend to hold moisture in open pores between particles and 

are mainly inorganic materials. During drying, the solid is generally unaffected by moisture 

removal, therefore the drying conditions do not influence the properties and appearance of the 

dried product. 

2. Fibrous, amorphous and gel-like materials – these are mainly organic materials and tend to 

dissolve moisture or trap moisture in fibres or very fine pores. These materials are affected by 

the removal of moisture and often reduce in volume upon drying and swell when wetted. Drying 

in the later stages tend to be slow. If the surface is dried rapidly, high temperature and moisture 

gradients may exist, which will result in warping, case hardening or cracking.  

2.3.2.1 Types of moisture 

Wet materials differ in their structural, physical, chemical, and biochemical properties which may 

significantly affect the drying process. Despite this variability, Strumillo (1986) states that, in practice, 
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the important parameters to consider are the types of moisture in the solid, defined as a function of the 

type of bonding with the material. The types of moisture present in a solid are bound moisture and 

unbound moisture. These are diagrammatically presented in Figure 2-4.  

Bound moisture is that which is held to the solid matrix and exerts a vapour pressure which is less 

than that of the pure liquid at the same temperature. Moisture can be bounded biologically, 

chemically or physically  

Unbound moisture is that which exerts an equilibrium vapour pressure equal to that of the pure 

liquid at the same temperature. This type of moisture can be removed relatively easier in a solid in 

comparison to bound moisture. 

Free moisture is the moisture contained in a substance in excess of the equilibrium moisture content 

at particular air temperature and humidity (Treybal, 1980). It can be either bounded and / or unbounded  

  

Figure 2-4: Different type of moisture contents (Mujumdar and Devahastin, 2000) 

 

2.3.2.2 Psychometrics  

The drying of solids leads to the humidification of the surrounding air. It is therefore necessary to 

understand psychometrics, which is the study of the properties of air and water vapour mixtures. For 

moisture to evaporate from the solid, its temperature should be such that its vapour pressure exceeds 

the partial pressure of the moisture in the gas in contact with the wet solid (Perry et al., 2008). The 

moisture removal capacity of the air increases by increasing the temperature and decreasing the air 

humidity (Mujumdar, 2006). Common definitions encountered in psychometry are presented in Table 

2-5 
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Table 2-5: Common terms encountered in drying  

Parameter Definition Relationship 

Absolute humidity Mass weight of water vapour per 

mass of moisture-free gas 

 

 AB

AA

PPw

Pw


  

(2-1) 

 

Dew point 

temperature  

Temperature at which moisture 

begins to condense when mixture is 

cooled at constant pressure 

 

Dry-bub 

temperature 

Temperature of the vapour gas 

mixture 

 

Relative humidity Ratio of partial pressure of moisture 

to partial pressure of moisture at 

saturation 

 

s

A

A
R

p

p
%100

 
(2-2) 

 

Absolute saturation 

humidity 

Absolute Humidity at saturation  

 s

AA

s

AA
s

pPw

pw


  

(2-3) 

 

Wet-bulb 

temperature 

Equilibrium temperature reached by a 

small amount of gas – vapour mixture 

after cooling it so as to reach 

saturation (100% relative humidity) 

 

A - Moisture; B - Moisture free gas 

 

2.3.2.3 Equilibrium moisture content 

When dry air flows over the surface of a moist solid, moisture is lost by surface evaporation until an 

equilibrium condition is achieved (Richardson et al., 2002). Similarly, if a dry solid is in contact with 

moist air, the solid will absorb moisture from the air until equilibrium is achieved. From a 

thermodynamics perspective, the drying rate is directly proportional to the difference of the chemical 

potentials of the moisture in the material and in the drying agent, thus the two are equal at equilibrium. 

  air

sat

pure pprateDrying   
(2-4) 

 

Perry et al. (2008) defines the activity of water in the gas phase as the ratio of the partial pressure of 

water to the vapour pressure of pure water. This has the same form as the definition of relative humidity. 

The activity of water in a mixture or solid is defined as the ratio of the vapour pressure of water in the 

mixture to that of a reference, usually the vapour pressure of pure water. 
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(2-5) 

 

At equilibrium, it therefore means that the moisture activity in the material equals the relative humidity 

of the air (Coumans, 2000).  

 
Rairmix Haa   

(2-6) 

 

Therefore, in either cases of absorption or desorption of moisture to the material, the rate of moisture 

transfer depends on the difference between the moisture concentration on the surface of the solid and 

the relative humidity of the air. The moisture content of the solid material which is in equilibrium with 

the vapour present in the drying air, at a given temperature and humidity known as the equilibrium 

moisture content (EMC) or sometimes referred to as the minimum hygroscopic moisture content 

(Strumillo, 1986). Theoretically, a solid cannot be dried to a moisture content below the EMC.  

While the EMC of a material varies with both humidity and temperature, it is strongly dependent on the 

air humidity (Lewis, 1921). For this reason, it is more convenient to study the relationship of equilibrium 

moisture at different air relative humidity than temperature. 

 

2.3.3 Convective heat and mass transfer 

When a wet material is subjected to thermal convective drying, heat and mass transfer processes occur 

simultaneously within the material being dried and in the boundary layer of the solid. These processes 

are depicted in Figure 2-5. The rate at which drying occurs is governed by the rate at which these transfer 

processes proceed (Mujumdar, 2006). 

1.Energy transfer (mostly as heat) from the surrounding environment is used to heat the solid. The 

removal of moisture from the surface of the material by convection depends on the external conditions 

of temperature, air humidity, air flow, external surface area of the solid, and pressure. 

2.Mass transfer of internal moisture to the surface of the solid. This is achieved by moisture migration 

from the interior of the solid out to the surface, from where its evaporation by the process previously 

explained. The internal movement of moisture within the solid to the surface is a function of the 

morphological characteristics of the solid (porosity, tortuosity, pore size), temperature and moisture 

concentration.  
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Figure 2-5: Heat and mass transfer during convective drying 

Mechanism of moisture migration 

Movement of moisture within the solid may be effected by one or several of the following mass transfer 

mechanisms (Gavrila et al., 2008, Mujumdar, 2006): 

 Liquid diffusion - if the wet solid is at a temperature below the boiling point of the liquid. It is 

regarded that the rate at which moisture is transferred is proportional to the change in moisture 

concentration of the material subjected to drying. 

 Vapor diffusion - if the liquid vaporizes within material. This is perceived as the main 

mechanism by which moisture is transferred in its vapor state. It occurs in materials which have 

pores with size greater than 10-7 m. 

 Capillary moisture movement - when a number of capillaries of different radii exist within a 

material forming interconnected channels. Capillary pressure gradient causes the redistribution 

of moisture by capillary suction from the large capillaries to the small ones.  

 Hydrostatic pressure differences - when internal vaporization rates exceed the rate at which the 

vapour moves through the solid matrix to the peripheral and to the surrounding. 

Various authors agree that the moisture movement mechanism within a solid could be represented by 

diffusion phenomena in accordance to Fick’s second law (Aguerre et al., 1985, Léonard et al., 2005, 

Crank, 1975, Qian et al., 2011, Chemkhi and Zagrouba, 2005). The unsteady state decrease in the 

moisture concentration during drying is described by equation (2-7) 

Where, M is the moisture concentration (g.water/g.dry solid)  

D is the constant of diffusion known as the moisture diffusivity (m2/s) 

x is the distance of moisture migration (m),  

t is the drying time (s) 
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Apart from being used to describe the drying behaviour of material, Fick’s second law of the unsteady 

state diffusion can also be used to determine the of moisture diffusivities of the material being dried.  

The moisture diffusivity in drying is essentially a lumped parameter as it describes a combination of 

moisture migration due to capillary forces, liquid diffusion and vapour diffusion hence the name 

‘effective’ moisture diffusivity. A constant effective diffusivity during convective drying of materials 

has been assumed by various authors (Doymaz, 2007a, Reyes et al., 2004, Hassini et al., 2007, Vega et 

al., 2007). As reported in previous works on convective drying, temperature significantly affects the 

effective diffusivity of moisture during the falling rate period (Celma et al., 2012). 

Analytical solutions for Fick’s second law are available in literature and are dependent upon the 

geometry of the solid (Crank, 1975). The analytical solution of the flat slab geometry is commonly used 

in the determination of the effective diffusivity due to its simplicity in relation to the other geometries 

(Reyes et al., 2004, Yu et al., 2009, Stasta et al., 2006). For slab of half thickness, z, the solution is 

given by equation (2-8) 
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Where Me is the is the equilibrium moisture content (g.water/g.dry solid)  

M0 is the initial is the initial moisture content (g.water/g.dry solid) 

z is the half thickness of slab (m) 

Deff is the effective moisture diffusivity (m2/s)  

t is the drying time (s) 

The effective moisture diffusivity is evaluated on the falling rate phase of the drying process using 

Fick’s second law of unsteady state diffusion. At large drying times, only the leading term in the series 

expansion, n = 0, is significant, therefore the diffusion coefficients are determined by plotting 

experimental drying data in terms of ln(MR) versus time. This manipulation is made on the assumption 

that the effective diffusivity is not significantly affected by the moisture content. This assumption is 

formulated by various authors for the analysis of convective drying processes (Celma et al., 2012, 

Hassini et al., 2007, Vasić et al., 2012). 
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The effective moisture diffusivity of materials studied under convective drying are presented in Table 

2-6  
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Table 2-6: Approximate effective moisture diffusivity of various materials (Celma et al., 2012) 

Material Moisture content  

(dry basis) 

Temperature 

 (°C) 

Diffusivity 

 (m2/s) 

Asbestos cement 0.10 - 0.60 20 2.0 × 10-9 - 5.0 × 10-9 

Clay brick 0.20 25 1.3 × 10-8 - 1.4 × 10-8 

Kaolin clay < 0.50 45 1.5 × 10-8 - 1.5 × 10-7 

Silica gel  25 3.0 × 10-6 - 5.6 × 10-6 

Tobacco leaf  30 - 50 3.2 × 10-11 - 8.1 × 10-11 

Wastewater sludge  80 - 112 1.6 × 10-8 - 3.7 × 10-8 

Tomato wastewater sludge  30 - 50 6.1 × 10-10 - 2.5 × 10-9 

Wood, yellow poplar 1.00 100 - 150 1.0 × 10-8 - 2.5 × 10-8 

 

 

2.3.4 Drying kinetics 

Every material has representative drying characteristics at a given set of conditions. Drying kinetics are 

determined experimentally by measuring the change in mass of a sample per given period of time There 

are three experimental methods to determine drying kinetics (Kemp et al., 2001): 

Periodic sampling or weighing – The entire or part of the sample is extracted at regular intervals 

during the drying process and its moisture content is measured. This method is time consuming 

and usually gives a few points on a moisture – time graph. 

Continuous weighing - The sample is put on a thermo-balance and its weight is recorded 

continuously. This gives a much larger number of points on the moisture – time graph. However, 

slight variations in weight during drying can be concealed by random noise, e.g., by vibrations 

of the sample caused by the airstream. 

Intermittent weighing - The sample is put on a balance.  At intervals, the air flowing around the 

sample is cut off or diverted, so that an accurate weight reading can be obtained when the system 

has stabilised (which takes a few seconds). It has been discovered that this method does not affect 

the overall drying kinetics unless the drying times are very short. 
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As stated by Saeed et al. (2008), drying data can be represented in various different ways. 

i. Drying curves – These are obtained directly from data of weight loss as a function of time 

data. Moisture content is plotted versus time.  

ii. Drying rate curves - These graphs are the derivative of the drying curves and they show the 

drying rate versus time. 

iii. Krischer curves - These curves are derived from the combination of the first two types of 

graphs and show the drying rate versus the moisture content. 

The typical drying curves of a material being dried at constant conditions are shown in Figure 2-6. 

 

  

(a) Variation of moisture content with time (b) Variation of drying rate with moisture content 

Figure 2-6: Typical drying curves obtained during the drying of a material (Rokey, 2006). 

Figure 2-6(a) depicts the typical evolution of the moisture content with time of material undergoing 

drying. Figure 2-6(b) is obtained by mathematically differentiating Figure 2-6(a). It is from this figure 

that one can clearly see the various phases of drying that the material undergoes. The first drying curve 

depicts two clearly-defined segments. Segment AB represents a constant drying rate period and BC 

represents the region where there is a gradual decline fall of the drying rate as the moisture content 

decreases. The second curve illustrates three different stages that may occur during drying. Segment 

DE represents the constant rate period, the same period represented by AB. Segments EF and FC 

represent falling rate periods in which EF is known as the first falling rate period and subsequently FC 

is referred to as the second falling rate period. Generally, the two can be distinguished apart because 

the first falling rate period is a straight line whereas the second falling rate period is curved. Points B 

and E represent the transition from the constant rate period to the falling rate period. The moisture 

content at which this transition occurs is known as the critical moisture content.  
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2.3.4.1 Constant rate period 

During the constant rate period, the entire surface of the material is saturated in moisture which 

continuously evaporates and is replaced by moisture from inside the particle. Basically, the internal 

moisture transfer to the surface and the evaporation at the surface are in equilibrium, therefore the free 

moisture on the surface will be evaporated in a steady continuous mode. The temperature of material 

during this drying phase is constant, and it approximates to the wet-bulb temperature value. The length 

of the constant rate period depends on the difference between the moistness on the surface of the sludge 

and the amount of unbounded water inside the material (Flaga, 2005). This period is completely 

controlled by the rates of external heat and mass transfer since a film of free water is always available 

at the evaporating surface. Thus, heat transfer to the material is utilised as the latent heat necessary to 

evaporate the water at the surface.  

2.3.4.2 First falling-rate period 

After the critical moisture content, the surface is no longer completely saturated in moisture. The 

temperature of the sludge will begin to increase from the wet bulb temperature to the temperature of 

heating. Moisture from the surface of the material evaporates at a faster rate than it can be replaced from 

inside the particle. The speed of drying will decrease until balanced hydration is accomplished. When 

these conditions are reached, the drying rate greatly depends on the internal mass transfer (Richardson 

et al., 2002).  

2.3.4.3 Second falling-rate period 

At the conclusion of the first falling rate period, it may be assumed that the surface is completely dry 

and that the evaporation front within the solid has been created and moves towards the centre. Drying 

in this phase is not influenced by the external drying conditions and moisture migration may be as a 

result of any of the mechanisms of moisture migration detailed in section 2.3.3. 

NB.  Not all material exhibit all the drying phases mentioned  

 

2.3.5 Process and material related factors that influence convective drying  

It is generally accepted by various researchers that the drying rate is significantly affected by either the 

rate at which moisture migrates from within the material to the surface or the rate at which moisture 

leaves the surface by evaporation (Léonard et al., 2005, Vega et al., 2007, Lewis, 1921, Doymaz, 2007, 

Bacelos and Almeida, 2011). This is mainly dependent upon the drying conditions employed. The key 

parameters that influence external mass transfer are air temperature, relative humidity and velocity as 

well as the available contact surface area. However, the internal mass transfer is affected by the physical 

composition of the material, material temperature and moisture content. 
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Considerable research has been conducted on the hot air convective drying of different types of 

materials. Several factors that have major influence on drying rate have been identified and can be 

lumped into two distinct categories: process conditions and material characteristics. 

2.3.5.1 Temperature 

For different applications, such as drying of food, pharmaceuticals, wood or wastewater sludge, 

temperature is a parameter of importance, as it significantly influences the drying rate. From a heat 

transfer perspective, it is commonly known that the greater the difference in temperature between the 

drying air and the moist material, the faster heat transfer occurs between the two. Higher temperatures 

also means higher input of heat for moisture vaporization (Bergman et al., 2011, Serth, 2007). However, 

high temperatures may result in loss of product quality, change of chemical structure as well as charring 

(Ruiz-López et al., 2004). Vast literature is available detailing the effect of temperature on the drying 

rate of various materials, with the most work conducted in the drying of agricultural material. Banga 

and Singh (1994) came to the conclusion that most properties that are important in drying such as 

thermal conductivity, mass diffusivity, and latent heat of evaporation greatly depend on temperature. 

2.3.5.2 Relative humidity 

Another relevant operating parameter is the amount of moisture present in the drying air as compared 

to the total amount of moisture that the air can hold at a particular temperature. This parameter is known 

as the relative humidity. The relative humidity influences particularly the external mass transfer, and 

consequently the drying rate particularly during the constant rate period. In other words, the increase of 

air relative humidity decreases the moisture concentration transfer potential between the surface of the 

material and the drying air, resulting in a reduced external mass transfer rate. 

2.3.5.3 Air velocity 

Air velocity during drying affects drying rate through its influence on the external mass transfer. Indeed, 

the increase of air velocity allows for the removal of more moisture from the material surface at given 

instance. Its effect on the falling rate period is much lower. A number of researchers have investigated 

the effects of air velocity on the drying rate of different food samples and have come to the conclusion 

that the effect of air velocity is not as pronounced as the contribution of drying temperature and relative 

humidity on moisture removal (Thiagarajan, 2008). Iguaz et al. (2003) reported that the effect of air 

velocity is more pronounced in the case of low temperature drying. 
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2.3.5.4 Size and surface area of the material 

The surface area of the material available for heat and mass transfer is important, more particularly 

during the constant rate period. Higher surface area leads to higher moisture removal rate from the total 

surface area and consequently to lower drying times. Material size is also an influencing parameter. 

During the falling rate period, the decrease of the material size decreases for the moisture the distance 

to diffuse to the surface of the material, leading to faster a falling rate period and thus shorter drying 

times.   

 

2.3.6 Drying Models 

There are basically three methods of modelling drying processes, which are: (a) a theoretical approach 

(b) a semi-theoretical approach and (c) an empirical approach. The theoretical approach gives a better 

understanding of the transport processes as it is based on the basic physical principles of drying. The 

drying process can be completely described using heat and mass transfer equations. Thus, it is essential 

to know the material and transport properties so as to implement the equations. Some of the required 

properties include the heat and mass transfer coefficients, thermal conductivity, moisture diffusivity, 

density and specific heat of the material (Karathanos, 1999). However, some of these physical 

properties are difficult to ascertain, therefore the relevance and accuracy of the model are limited by the 

formulated assumptions. Theoretical models are usually mathematically complex and their resolution 

is computationally challenging.  

The semi-theoretical approach gives understanding of the transport process in a simplified way but it is 

not as comprehensive as a theoretical approach (Omid et al., 2006). These kind of models typically 

predict the variation of moisture content with time and space whilst also describing the general moisture 

transport process. On the other hand, empirical equations, also referred to as experimental based models, 

are based on the mathematical fitting of the experimental data with poor or no understanding of the 

phenomena involved. Empirical models are restricted to the cases from where they were developed 

(Wang and Brennan, 1995). These empirical models consist of lumped parameters and in most cases, 

they generally predict only the average moisture content of the material as a function of time.  

Empirical models are mathematically easier to formulate and compute in comparison to theoretical 

based models. For design purpose and industrial applications, simple empirical expressions that 

adequately describe the drying kinetics are preferable (Midilli et al., 2002). In an extensive review on 

thin layer models and their applicability conducted by Kucuk et al (2014), it was noted that there are no 

theoretical models developed so far that are practical and can also unify the calculations. The marked 

discrepancy that exists between the results formulated from theoretical models and industrial drying 

practice has led manufacturers to rely more on empirical models based on pilot plant tests (Kemp and 

Oakley, 2002).  
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An equation with the general form of Newton’s law in heat transfer is often used to describe the moisture 

loss during thin-layer drying. 

 
 eMMk

dt

dM
  

(2-10) 

The Newton’s equation yields a general exponential solution in terms of moisture ratio, MR as shown 

by equation (2-11).  

  ktMR  exp  
(2-11) 

Where  k is a constant  

 t is the drying time  

Due to the model’s inability to provide kinetic data to the desired level of accuracy, numerous 

modifications to the Newton’s equation have been proposed to provide better fits (Akgun and Doymaz, 

2005, Kucuk et al., 2014). The variation to the Newton model are presented in Table 2-7. Empirical 

models are extensively used for drying and about 67 models have been reported up to date (Kucuk et 

al., 2014, Jain and Pathare, 2004). The models from Table 2-7 are the most widely used.  

Table 2-7: Common thin-layer empirical models used in air drying (Doymaz, 2007) 

         Model name Equation 

1. Newton    ktMR  exp
 (2-12) 

 

2. Henderson and Pabis   ktaMR  exp
 (2-13) 

 

3. Logarithmic     cktaMR  exp
 (2-14) 

 

4. Page    nktMR  exp
 (2-15) 

 

5. Modified page    n
ktMR  exp  (2-16) 

 

6. Verma       gtaktaMR  exp1exp  
(2-17) 

 

7. Two-term exponential       kataktaMR  exp1exp  
(2-18) 

 

8. Midilli    bttkAMR  00 exp
 (2-19) 

 

9. Two-term     tkbtkaMR 10 expexp 
 (2-20) 
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The Page model has been regarded as accurate for food drying (Guan et al., 2013). Montazer-Rahmati 

and Amini-Horri (2005) investigated the convective air drying of picrite on a conveyer belt dryer and 

the results obtained showed that of all the proposed models, the Page, modified Page and the 

Logarithmic models fit drying curves better than the rest with an R2 value greater than 0.975. Of 

relevance to this project, the Page model was found the best model in describing the drying of sludge 

from municipal wastewater treatment plant as well as sludge from a tomato processing plant (Celma et 

al., 2012, Qian et al., 2011). 

 

2.4 Effect of drying on nutrient content and thermal properties of excreta 

Most of the research regarding the effect of drying on excreta properties has been conducted mostly for 

animal manure that have been traditionally known to be rich in nutrients and therefore can be used as a 

valuable fertilizer resource. The first study on the effect of drying on manure nutrient content was 

conducted by Cuthbertson and Turnbull (1934), who came to the conclusion that excreta drying in a 

water bath may lead to a significant loss in nitrogen and sulphur. Manoukas et al. (1964), whilst 

researching on the drying of fresh excreta from hens using freeze drying and convective oven drying, 

observed that the nutrient and calorific value are affected by the drying method and temperature. They 

reported reduction in the calorific value of up to 20 % and nitrogen losses of 15 % whilst using 

convective drying. However, some of the methods employed to ascertain these values were questioned 

by Shannon and Brown (1969) and a similar experiment using hen excreta was conducted to verify the 

results. They reported similar results, although the energy and nutrient losses were significantly lower 

than previously reported by Manoukas et al. (1964), i.e. 4.6 % and 10 % respectively. Both researchers 

admitted facing great difficulty in evaluating the energy content of wet excreta. 

Sibbald (1979) investigated the effect of convective drying on the calorific value of manure for various 

farm animals (chicken, cows, pigs, horses, and sheep) by varying the drying temperature. Temperature 

did not have an effect on the calorific value of the excreta. In a study conducted by Sistani et al. (2001) 

about the drying effects on the phosphorus content of excreta from broiler chickens, it was noted that 

freeze drying and oven drying at 60°C significantly reduced total phosphorus concentrations than 

convective air drying at 35 °C. In a follow up study on dairy cattle manure, Chapuis-Lardy et al. (2004) 

reported higher water-soluble inorganic phosphorus concentration in fresh wet excreta than in dried 

manure. On the contrary, Dail et al. (2007) reported that oven drying at 65°C increased the water-

extractable phosphorus in both swine and dairy manures.  

The most important parameters required to describe heat transfer in a solid material are the thermal 

conductivity and heat capacity. Thermal conductivity is defined as the rate at which heat passes through 

a medium. Heat capacity, also referred to as thermal capacity, is the ratio of the heat added to or removed 

from an object to the corresponding temperature change. When a material is said to have a low heat 

http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Temperature
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capacity, a large temperature change will result for a relatively small heat input. The ratio of thermal 

conductivity and heat capacity yields an important property called thermal diffusivity. Thermal 

diffusivity provides an indication of the rate that the temperature of a material changes when subjected 

to a temperature gradient (Bergman et al., 2011). Thermal properties are greatly influenced by the 

composition of the material, water content and temperature. Numerous researchers in diverse fields 

have investigated the effects of these parameters on the thermal properties of soil (Hanson et al., 2000, 

Hall and Allinson, 2009, O'Donnell et al., 2009), organic matter (Read and Lloyd, 1948, Huet et al., 

2012, Dewil et al., 2007) and food (Rao et al., 2014, Lewicki, 2004, Wang and Brennan, 1995). All the 

authors came to the same conclusion that thermal conductivity and heat capacity increases as the 

moisture content of the material increases. The same effect on thermal conductivity is observed as the 

temperature of the material is increased.  

It is evident that drying can affect the nutrient concentration as well as the thermal properties of excreta 

and this differs with the type of excreta employed. The operational sustainability of the drying process 

hinges on the ability to harness both energy and nutrient value, so the operating parameters during 

drying for this propose should be determined.  

It should be noted, however, that the use of excreta derived products should be done with extreme 

caution as they may contain pathogens (bacteria, viruses, protozoa and helminths) which may pose as 

a health hazard. Health problems attributed to excreta reuse are very common in developing countries, 

especially where crop fertilisation using untreated excreta (Mara and Cairncross, 1989). Therefore  

treatment of the dried sludge is essential before it can be used.  
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3 MATERIAL AND METHODS 

This chapter details the type of sludge used for this study as well as the custom designed 

rig used for the determination of the drying kinetics. This section also describes the 

experimental protocol for the characterization of the chemical and thermal properties of 

the sludge before and after drying. 

3.1 Sludge source and processing  

The sample employed in this study was faecal sludge from ventilated improved pit (VIP) latrine in the 

eThekwini municipality (Durban, South Africa). The sample was obtained during pit emptying 

campaigns. An example of pit emptying is shown in Figure 3-1.  

In the laboratory, the sludge was sieved using a 5 mm grid in order to remove detritus such as plastics 

and textiles. The sieved sludge was then stored in a closed bucket and placed in the cold room at 4°C 

until used for experiments. 

 

Figure 3-1: Photograph showing the collection of samples during a pit emptying exercise 
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3.2 Description of the Drying rig 

A convective dryer with a thermobalance was used for the drying experiments. The dryer can be 

classified as a direct-heat dryer, which provides the energy to heat the material with the hot air and 

sweeps away the moisture. The apparatus can be categorised into 3 distinct sections, which are: 1) 

humidification section, 2) heating section, and 3) the drying section. 

Dehumidified air, supplied by a compressor, was employed for the experiments. A 23 mm diameter 

orifice plate alongside with a Pt 100 temperature sensor were placed before the entrance of the 

humidifier section. Pressure transducers were placed on either side of the orifice place to determine the 

differential pressure as the air flowed through. The temperature and differential pressure readings were 

then used to evaluate the volumetric flow rate of the air entering the humidification section. The flow 

rate was regulated by a globe valve. 

The humidifier was a packed column, in which air entering from the bottom section came into counter-

current contact with water droplets from a shower rose entering from the top. The water went out the 

column by the bottom, passed into a water bath where it was maintained at the desired temperature, and 

was recirculated into the column. The relative humidity of the air used was adjusted by controlling the 

temperature of the water in the bath. Increasing the temperature of the water increases the amount of 

water that evaporates into the gas stream thus effectively increasing the humidity of the air. After 

absorbing moisture in the column, the air passed into the heating section, where electric heating coils 

elevated its temperature to the set value.  

After the heating zone, the heated air is sent to the drying chamber where the faecal samples were dried. 

A probe to measure relative humidity was installed between the heating and drying chamber to monitors 

the humidity of the air entering the chamber. The drying chamber was constituted of a grid disc to place 

the sample, which was suspended on a precision weighing strain gauge load cell, with an accuracy of 

0.01 g, connected to a computer. The sample mass was measured on-line which enabled to track the 

change in mass with time. A probe situated in the drying chamber was used to monitor the temperature 

and negative feedback was applied to regulate the heat supplied by the heating coils. 

Air temperature, flow velocity, relative humidity, and sample mass were constantly monitored and the 

values from the measurements were continually logged on the computer. The flowchart and photograph 

of the entire set-up is presented in Figure 3-2 and Figure 3-3. 
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Figure 3-2: Flow chart of the drying rig (1. Dry air from the compressor, 2 – heated water from 

water bath, 3- humidified air to heater, 4 – heated air to the drying chamber, 5 

exhaust air.) 

 

 

Figure 3-3: Photograph of the drying rig 
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3.3 Experimental procedure 

Unless stated otherwise, the procedures were performed in accordance to the standard operating 

procedures detailed in the operations manual which can be accessed of the website for the Pollution 

Research Group (http://prg.ukzn.ac.za/laboratory-facilities/standard-operating-procedures). The 

relevant Standard Operating Procedures are reproduced in Appendix A 

3.3.1 Sample preparation 

The effect of the operating conditions was tested on two different geometries, i.e. flat slab and 

cylindrical geometry in the form of pellets. Prior to use of the sludge, it was mixed in the bucket to 

ensure that it was homogeneous. Cylindrical shaped pellets were extruded by the use of a hand-held 

extruder. The diameter of the pellets was varied by using different sized extruder nozzles.  

For the flat slab configuration, faecal sludge was placed on a circular holder measuring 70 mm diameter 

and 4 mm height. The average mass of sludge before the beginning of the experiment was 45 g ± 2 g. 

3.3.2 Operating conditions 

Prior to the start of a drying experiment, the conditions to investigate were set and the dryer was run for 

approximately 30 minutes so as to ensure that steady operating conditions were achieved. During the 

experiment, the sample mass was recorded at 5 minute intervals and the experiment was stopped when 

there was no mass decrease after 30 minutes. 

The following drying conditions were investigated: 

Temperature - Temperatures of 40 °C, 60 °C and 80 °C were investigated while keeping the relative 

humidity at 5 % and the air velocity at 0.06 cm/s. 

Relative humidity - Relative humidity of 5 %, 15 % and 25 % were investigated while maintaining the 

air temperature at 60 °C and air flow velocity constant at 0.06 cm/s. 

Flow-rate - Flow velocity of 0.03 cm/s, 0.06 cm/s and 0.12 cm/s were investigated while keeping the 

relative humidity at 5 % and the air temperature constant at 60 °C. In each case, the flow velocity 

refers to the average velocity of air passing through the cross section of the drying chamber. 

Pellet size - The diameter of the pellets investigated were varied at 8 mm, 10 mm, 12 mm and 14 mm 

while maintaining the air temperature at 60 °C, the flow velocity at 0.06 cm/s and the relative 

humidity of 5 %. 

At least three replicates were used for each set of drying conditions investigated to determine the 

repeatability of the experiments as well as to determine the statistical variance of the results obtained. 
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3.4 Physico-chemical characterisation of sludge 

Characterisation of the sludge was performed to determine the effect of convective drying on the 

properties of sludge. The properties of interest were classified into two groups, which are the thermal 

and chemical properties. At least three replicate samples were used for each analysis conducted to 

enable the statistical analysis of the obtained results each  

3.4.1 Moisture content and ash content  

Moisture content was determined by drying samples in an oven at 105°C for about 24 h. The moisture 

content (M) of a product can be defined in either dry or wet basis. The moisture content is defined by 

equation (3-1) in dry basis, and by equation (3-2) in wet basis.  
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Where  w0 is the initial mass of the sample before being oven dried  

wf  is the dried mass of the sample 

The two moisture content expressions are related by the following equation: 
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The average initial moisture content for the sludge used in this study was found to be 80% (wet basis) 

 

Ash content is the amount of material that remains after combustion in the oven at 550°C for 2 h. The 

ash content of a material represents the inorganic material that remains after the removal of water and 

organic matter by combustion. It is calculated by equation 
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Where  wf2 is the mass of residue after combustion  
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3.4.2 Thermal analysis of faecal sludge 

Thermal characterisation of the sample was performed as this data is relevant for the design of a dryer 

and for the use of the dried sludge as fuel. The properties that were analysed included the calorific value, 

heat capacity and thermal conductivity. The gross calorific value was determined by combusting a 

known mass of sample in an oxygen bomb calorimeter (Parr 6200). Thermal conductivity and heat 

capacity were determined using a thermal conductivity analyser (C-Therm TCi) which uses the 

Modified Transient Plane Source (MTPS) technique in describing the thermal conductivity, heat 

capacity and effusivity of materials 

3.4.3 Nutrient analysis 

Studies conducted by Dail et al. (2007), Chapuis-Lardy et al. (2004) and (Sistani et al., 2001) showed 

that drying may have an impact on the concentration of nutrients available in poultry and pig excreta. 

Chemical analyses were performed on the dried product in order to ascertain the effect that convective 

drying might have on the agricultural value as a nutrient supplement. The nutrients that were 

investigated can be split into two categories, which are. elemental and molecular nutrients. The 

elemental nutrients include sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), and 

phosphorus (P), which are macronutrients essential for plant growth. The concentration of these 

nutrients in sludge were determined using Microwave Plasma-Atomic Emission spectrometer (4200 

MP-AES) equipped with a concentric nebulizer.  

The concentrations of the molecular nutrients were determined using a Spectroquant photometer 

(Pharo 300) and the relevant commercial test kits specific to the analysis. Prior to each test, a known 

mass of the sample was added to a known volume of water and centrifuged for liquid-solid separation. 

The resulting supernatant was taken and analysed. In essence, this analysis measures the amount of 

water soluble nutrients in the liquid fraction of sludge that is easily released after irrigation or rainfall. 

The compound ions investigated were ammonia (NH3), nitrates (NO3
-) and orthophosphates (PO4

-3).  

 

3.5 Data analysis 

3.5.1 Moisture ratio  

The moisture content of the solid material which is in equilibrium with the vapour contained in the 

drying agent, at a given temperature and humidity known as the equilibrium moisture content (Me). 

Theoretically, a solid cannot be dried to moisture content below the equilibrium moisture content. The 

moisture ratio is the ratio of the moisture content at a particular time to the initial moisture content. It 

is calculated from equation (3-5): 
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Where 𝑀 , 𝑀0, and 𝑀𝑒 are the mass of the sample at any particular instant, the initial mass and the  mass 

at the equilibrium moisture content respectively. 

3.5.2  Drying curves  

The sample mass was constantly monitored and logged on the computer. The drying rate, which is the 

amount of evaporated moisture over time, was calculated by dividing the decrease in mass of the sample 

between two subsequent measurements by the elapsed time as shown in equation (3-6). These were then 

normalised for differing surface areas by dividing by the surface area  
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Prior to the calculation of the drying rate, the raw data was smoothened to eliminate the noise within 

the data by using a cubic spline fit over a number of adjacent data points as stipulated by Kemp et al. 

(2001). The Matlab code used to smoothen the data is presented in Appendix B and the comparison 

between the smooth data and the raw data is shown in Appendix C 

3.5.3 Evaluation of the effective moisture diffusivity 

The effective moisture diffusivity was calculated from Fick’s second law of unsteady state diffusion 

which describes the internal mass transfer of moisture. The effective moisture diffusivity was evaluated 

only on the falling rate phase of the drying process. This analysis was conducted using flat slab 

geometry instead of pellets, as this offers more mathematical simplicity on the determination of the 

effective moisture diffusivity as compared to other geometries.  

The temperatures for the analysis were 40, 50, 60, 70 and 80 °C while the air stream was operated at a 

constant air velocity of 0.06 cm/s and relative humidity of 5 %. The basic assumptions adopted for this 

analysis were: 

(a) The resistance to the flow of moisture through the sludge was uniformly distributed throughout the 

interior of the sludge.  

(b) The sludge could be viewed as a homogeneous mixture; hence it can be regarded to have uniform 

moisture distribution.  

(c) The movement of moisture due to thermal gradient within the sample is negligible therefore moisture 

movement maybe be regarded as a one-dimensional diffusion process.  
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(d) Negligible shrinkage of the sludge sample during drying. 

These assumptions mean that the effective moisture diffusivity can be regarded as independent of the 

local internal moisture content. For purpose of this study, the equilibrium moisture content was regarded 

to be the moisture content of the sample after the drying experiment was achieved.  

The diffusion coefficient was determined from equation (2-8) as described in section 2.2.2. However, 

the moisture ratio was evaluated on a mass basis as shown in equation (2-8)  
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Where  M is the mass of sample (g),  

Me is the final mass of the dried sample (equilibrium mass) (g),  

M0 is the initial mass of sample (g),  

z is the thickness of slab (m),  

Deff is the effective moisture diffusivity (m2/s)  

t is the drying time (s). 

Equation (2-8) was simplified by only considering only the first term of the summation series solution 

then linearizing the expression leading to equation (2-9).  
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Plotting a graph of  MRln  vs t produces a straight line curve from which the effective moisture 

diffusivity can be determined by manipulating the slope of the graph.  

The variation of the effective diffusivity of the water with temperature is classically represented by the 

Arrhenius equation (Chemkhi and Zagrouba, 2005), considering the fact that molecular kinetic energy 

increases when temperature increases. 

 

The activation energy 𝐸𝑎 can be determined by linearizing equation (3-7) into equation (3-8) and 

plotting ln (𝐷𝑒𝑓𝑓) versus 1/T. The slope of the line corresponds to (𝐸𝑎/R) and the intercept equals ln 

(𝐷0). 
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Where  Ea. is the activation energy (kJ/kmol)  

D0 is the pre-exponential factor (m2/s) 

 

3.6 Fitting of drying curves to empirical models 

One of the objectives was to test the fitting of various empirical drying models on the experimental 

results. The Newton model, Page model, modified Page model, Two-term exponential model and the 

Logarithmic model were the models investigated. Non-linear regression analysis, using Solver in 

Microsoft Excel, was conducted to evaluate the model constants at various drying conditions.  

The drying models were evaluated through the comparison with the experimental data by using the 

goodness of fit statistical measure. This entails the determination of the coefficient of determination R2, 

which evaluates how well the model fits the experimental data, and the root mean square error (RMSE), 

which reflects the dispersion in the obtained data. A model represents accurately the experimental data 

for high R2 close to 1 and a low value of RMSE. 

The two statistical measures were evaluated as follows: 

Root mean square error (RMSE) 
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Where   expRM is the average moisture ratio  

MRexp and MRcal are the experimental and calculated moisture ratio 

N is the number of points used 
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4 RESULTS AND DISCUSSION 

This chapter presents and discusses the experimental results obtained from convective 

drying of sludge from ventilated improved pit latrines. As explained in section 2.3.3, 

transport phenomena comprise of internal and external resistance to heat and mass 

transfer. Therefore, the resistance to the transport phenomena controls the rate of 

moisture removal within the solid (drying rate). By analysing the drying characteristics 

of faecal sludge, the predominant transport phenomena can be determined with the 

progression of drying.  

This chapter is split into 3 main sections, the first detailing the effect of air temperature, 

relative humidity and flow rate as well as sample thickness on the drying kinetics of 

sludge. The second section highlights the effect of drying on the thermal properties as 

well as the nutrient content of the sludge, properties which are essential in the possible 

design of a sludge dryer and also vital for the agricultural sector. The last section 

encompasses the selection of an empirical drying model that best describes the drying 

data.  

Unless stated otherwise, the results presented in this section are that of the cylindrical 

geometry in the form of extruded pellets. Particular focus was placed on pellets as studies 

have shown that pelletisation of bio solids is considered as a viable solution to producing 

a dust free product of high density. Siriwattananon and Mihara (2008) observed that 

pellets are effective in decreasing nutrient losses from the soil and also release nutrients 

at a steady rate compared with non-pelletized products. 

4.1 Drying kinetics  

This subsection details the drying curves obtained during the experiments in order to ascertain the effect 

of the parameters that were investigated - air temperature, air velocity, air humidity and sample size. 

Drying experiments were performed on the cylindrical geometry in the form of pellets, and also as a 

flat slab geometry. The shape of the rate versus time graphs produced at each data set were similar 

regardless of the configuration used on each operating parameter investigated. It was from these graphs 

that the different phases of drying were depicted. The variation of the mass with time during drying of 

the sample is presented as normalized mass or mass ratio to cater for the slightly different initial masses. 

4.1.1 Effect of air temperature on drying rate  

The effect of temperature on convective drying of faecal sludge was investigated by varying the air 

temperature while maintaining the diameter of pellets, air humidity and air flow constant. The 

temperatures used for this investigation were 40, 60 and 80 °C. For each experiment, an initial mass of 
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23 ± 2 g of pellets was extruded and placed into the drying rig. The typical drying curves depicting the 

evolution of mass ratio with time at different air temperatures is shown Figure 4-1. 

 

Figure 4-1: Influence of temperature on the sample mass evolution with time during convective 

drying of faecal sludge at constant pellet diameter of 8 mm, air relative humidity of 

5 % and air flow velocity of 0.03 cm/s 

 

As expected, the drying air temperature is one among the main factors that influence the drying kinetics. 

Drying sludge using higher air temperature, resulted in a notable decrease in the drying time, as can be 

deduced from Figure 4-1. Similar trends were observed for 10 mm, 12 mm, 14 mm pellets as well as a 

flat sab of 7 mm thickness. The times required to dry pellets with a diameter of 8 mm to an equilibrium 

moisture content of 10% (wb) at temperatures of 80 °C, 60 °C and 40 °C were 90 minutes, 135 minutes 

and 190 minutes respectively. Increasing the air temperature from 40°C to 80°C had an overall effect 

of reducing the total drying time by 53%. 

The influence of temperature on the variation of the drying rate with amount of free moisture, which is 

represented by the moisture ratio, was investigated and the results are presented in Figure 4-2. 
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Figure 4-2: Influence of temperature on the drying rate with moisture ratio during convective 

drying of faecal sludge at constant pellet diameter of 8 mm, relative air humidity of 

5 % and air flow velocity of 0.03 cm/s 

 

The shape of the rate graphs produced clearly depicts the two phases of drying, which are the constant 

rate period and the falling rate period. The existence of a constant rate period means that the sludge had 

a high enough moisture content to maintain a saturated surface to allow for constant evaporation. The 

drying rates observed during the constant rate period whilst drying sludge pellets which are 8 mm in 

diameter, using air of 5% relative humidity and flow velocity of 0.03cm/s, at temperatures of 40°C, 

60°C and 80°C were 20, 28 and 33 g/min.m 2 respectively. Using higher temperatures yielded higher 

drying rates during the constant rate period. Increasing the air temperature from 40°C to 80°C resulted 

in a 65% increase in the drying rate. This result is attributed to the fact that increasing the air temperature 

increases the rate of heat transfer into the sample of sludge. The greater the temperature difference 

between the solid and the drying air results in greater mass transfer (Doymaz, 2005, Saeed et al., 2008, 

Benali and Kudra, 2002, Tao et al., 2005, Stasta et al., 2006, Léonard et al., 2004). 

The critical moisture content, which is the point at which there is a transition from the constant rate 

period to the falling rate period, was observed to be affected by the drying air temperature as depicted 

in Figure 4-2. The critical moisture content was observed at a moisture ratio of about 0.74 when drying 

using air with a temperature of 40°C, whereas the critical moisture content was found to occur at a 

moisture ratio of about 0.42 when drying with a temperature of 80°C. In other words, 26% of the free 

moisture contained within the sludge was removed during the constant rate period and the remainder of 

the moisture was removed during the falling rate period when drying at an air temperature of 40°C. In 



 

41 

 

contrast, 58 % of the moisture was removed during the constant period temperature of 80°C. This 

observed may be as result of increased internal moisture movement to the surface of the sludge due to 

increased vapour pressure that will then sustain the constant rate period until the sludge is much drier. 

4.1.2 Effect of temperature on the effective moisture diffusivity, (Deff)  

The existence of the falling rate period in the drying kinetics obtained in this study is evidence that the 

drying of faecal sludge is affected by the internal resistance to mass transfer. Moisture diffusivity, Deff, 

is an essential transport property that describes the mass transfer of moisture in the falling rate drying 

period. It is assumed that the resistance to moisture migration to the surface of the solid because of 

water vapour gradients within the solid is the determining mechanism during this period.   

At each set of investigated drying conditions, the moisture ratio was measured and the logarithm of the 

moisture ratio with time was plotted as shown in Figure 4-3.  

 

 

Figure 4-3: Logarithm of the moisture ratio versus time for the faecal sludge as flat slab at various 

air temperatures  

 

Linear regression was only performed on the sections of the drying curves corresponding to the falling 

rate period. It can be observed from Figure 4-3 that the assumption of constant diffusivity during the 

falling rate period is validated, as a straight line describes the region with reasonable accuracy with a 

coefficient of determination, R2, at least 0.97. This observation implies that moisture transfer 
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mechanism during the falling rate period of the drying of sludge can be approximated by using the 

effective moisture diffusivity approach as detailed in section 3.5.3. In addition, the linear curve obtained 

from the  logarithmic dimensionless moisture ratio versus drying time graph, Figure 4-3, indicates that 

the effective moisture diffusivity does not significantly depend on the instantaneous moisture content 

of the sludge sample during this drying period. 

 

Figure 4-4: Effective diffusivity versus air temperature during drying of VIP faecal sludge as a 

flat slab  

 

The variation of the effective diffusivities obtained as a function of temperature is illustrated in Figure 

4-4. It can be observed from the plot that increasing the temperature considerably increases the effective 

diffusivity. This is because increasing the air temperature increases the internal temperature of the 

sample thus resulting in higher vapour pressure inside the sample. Higher internal vapour pressures 

results in faster moisture migration to the surface of the drying solid hence increased internal diffusion. 

The effective diffusivities ranged between 7.8×10-8 and 2.1×10-7 m2/s in the temperature range of this 

study. These values are in the same order of magnitude to those found in the study of wastewater sludge 

cited in Table 2-6. 

Researchers in the drying field have found that the relationship between the temperature and effective 

diffusivity can be described by the Arrhenius equation (Celma et al., 2012, Vaxelaire et al., 2000, 

Léonard et al., 2004, Ruiz-López and García-Alvarado, 2007, Vega et al., 2007). To investigate whether 

the Arrhenius equation could be used to describe the relationship between the two properties for faecal 

sludge, the logarithm of the effective diffusivity was plotted versus the inverse of temperature as shown 

in Figure 4-5. 



 

43 

 

 

Figure 4-5: Variation of ln(Deff) versus 1/T to investigate the applicability of the Arrhenius 

equation in describing the relationship between drying temperature and the 

observed effective moisture diffusivity 

 

A linear relationship, with a regression coefficient of 0.973, was found to satisfactorily describe the 

relationship between the logarithm of the effective diffusivity and the inverse of temperature as shown 

in Figure 4-5. This observation implies that the Arrhenius equation can be used to describe the 

dependence of the effective diffusivity of faecal sludge with the drying temperature in the range 

employed in this study. 

After establishing the validity of the Arrhenius equation in describing the effective diffusivity, the 

activation energy of the sludge samples and the subsequent pre-exponential factor of the Arrhenius 

equation was evaluated. The activation energy was calculated from the slope of the straight line found 

in Figure 4-5, while the pre-exponential factor was evaluated from the y-intercept. The evaluation of 

the activation energy value is important as it is a measure of the temperature sensitivity of effective 

diffusivity. The activation energy Ea was evaluated at 21.78 kJ/kmol and the pre-exponential factor at 

32.88×10-8 m2/s. Celma et al. (2012), in their work on the investigation of sludge from wastewater plants 

of tomato transformation industries, found that the activation energy varied between 30.15 kJ/mol and 

36.70 kJ/mol. Reyes et al. (2004) also investigated the drying kinetics of biological sludge form a 

wastewater treatment plant and found the activation energy to be 30.07 kJ/mol and the pre-exponential 
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factor to be 41.73×10-8 m2/s. The values of activation and pre-exponential factor found in this study 

were in the same order of magnitude to the values obtained from wastewater sludge.  

4.1.3 Effect of air relative humidity 

The effect of relative humidity on the convective drying of VIP faecal sludge was investigated by 

varying the air relative humidity while maintaining the diameter of pellets, air temperature and air flow 

constant. The relative humidity employed for this investigation were 5%, 15% and 25% and the results 

are shown in Figure 4-6.  

 

Figure 4-6: Effect of humidity on the sample mass evolution with time during convective drying 

of faecal sludge at constant pellet diameter of 8 mm, temperature of 60 ºC and air 

flow velocity of 0.03 cm/s.  

 

From the drying kinetics curves, it was observed that the air relative humidity had a considerable effect 

on the drying time of faecal sludge. At an air temperature of 60 ºC and air velocity of 0.03 cm/s, 

increasing the relative humidity from 5% to 15% increased the drying time from 135 to 180 minutes 

and using air humidity of 25% increased the drying time to 220 minutes.  

The influence of air relative humidity on the variation of the drying rate with the moisture ratio was 

investigated and the results are presented in Figure 4-7. The drying rate curves obtained give an insight 

on how the humidity affects the different drying rate periods. Both the constant rate period and the 

falling rate period are significantly affected by the change in relative humidity of the drying air. During 

the constant rate period, using air with a relative humidity of 5% resulted in the highest rate of moisture 

removal of around 30 g/min.m2 compared to relative humidity of 15% and 25% which yielded 
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23 g/min.m2 and 19 g/min.m2 respectively. This observation was expected as the increase in the relative 

humidity of the drying air reduces the driving force of mass transfer rate, as explained in section 2.3.5.2. 

Increasing the relative humidity reduces the difference between the water content in the drying air and 

that on the surface of the solid undergoing the drying process.  

 

Figure 4-7: Effect of air relative humidity on the drying rate with moisture ratio during convective 

drying of faecal sludge at constant pellet diameter of 8 mm, temperature of 60 ºC 

and air flow velocity of 0.03 cm/s 

 

Figure 4-7 shows that the change in the relative humidity of the air used has an effect on the critical 

moisture content. Employing air with low relative humidity resulted in a prolonged constant rate period 

as compared to using air of higher relative humidity. The critical moisture content was observed at a 

moisture ratio of about 0.69 when drying using air with a relative humidity of 5%, whereas the critical 

moisture content was found to occur at a moisture ratio of about 0.83 when drying with a relative 

humidity of 25%. 
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4.1.4 Effect of sample thickness 

In order to investigate the influence of sample thickness on the drying kinetics of faecal sludge, pellets 

of different diameters: 8 mm, 10 mm, 12 mm and 14 mm, were dried at an air temperature of 60 °C, air 

velocity of 0.06 cm/s and average relative humidity of 5%. The results are presented in Figure 4-8. 

 

Figure 4-8. Effect of sample diameter on the sample mass evolution with time during convective 

drying of faecal sludge at constant temperature of 60 ºC, relative humidity of 5% 

and air flow velocity of 0.03 cm/s. 

 

It can be seen from Figure 4-8 that increasing the pellet diameter leads to an increase of the drying time 

as it takes approximately 135 minutes to dry an 8 mm sludge pellet as compared to the 200 minutes 

required to dry a 14 mm pellet under the same drying environment. It generally takes longer for larger 

samples to dry than smaller ones under the same operating conditions. This is an expected result as the 

distance that moisture travels within the sludge to the surface has a great contribution on the drying 

time.  

To fully comprehend the effect of sample thickness on the different phases of drying as well as rate of 

moisture removal, drying rate curves were plotted and presented in Figure 4-9. It is immediately 

apparent from Figure 4-9 that sample size has an minor influence in the constant rate period. 
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Figure 4-9: Effect varying pellet diameter on the drying rate with moisture ratio during 

convective drying of faecal sludge at constant temperature of 60 ºC, relative 

humidity of 5% and air flow velocity of 0.03 cm/s 

 

The drying rates during the constant drying period were close for the different pellet diameters, as the 

values ranged between 24.5 and 27 g/min.m2. This is attributed to the fact that the constant rate period 

is mainly a convective mass transfer process which is primarily affected by the external drying 

conditions. The drying boundary layer occurs at the surface, therefore changing the pellet diameter 

would not affect the rate at which moisture is evaporated from the surface of the pellets thus yielding 

similar drying rate per surface area during the constant rate period. The difference in the total drying 

time indicates that the change in sample has a significant effect during the falling rate period. This 

shows that larger sample thickness causes a slower rate of moisture removal within the solid. Increasing 

the pellet diameter increases the mean path by which moisture has to migrate to reach the surface of the 

material for its evaporation. 

The change in the pellet diameter did not affect the value of the critical moisture content as for it 

occurred around a moisture ratio of is 0.67. This observation may be due to the fact that the critical 

moisture content of a material is greatly influenced by external conditions.  
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4.1.5 Effect of air velocity 

Many authors have studied the effect of air flowrate on convective drying and found that this depends 

on the material being dried and the air speed range, as discussed in section 2.3.5.3. The effect of air 

velocity on the drying kinetics of faecal sludge was investigated by conducting experiments using flow 

velocity of 0.03 cm/s, 0.06 cm/s and 0.12 cm/s. The other parameters where held constant, i.e. relative 

humidity of 5 %, temperature of 60 °C and sample diameter of 10 mm. 

 

Figure 4-10: Effect of air velocity on the sample mass evolution with time during convective 

drying of faecal sludge at constant temperature of 60 ºC, relative humidity of 5% 

and pellet diameter of 8 mm.  

 

Figure 4-11: Effect of air velocity on the drying rate during convective drying of faecal sludge at 

constant temperature of 60 ºC, relative humidity of 5% and pellet diameter of 8 mm  
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The effect of air velocity had a weak effect on the overall drying time which was approximately 

200 minutes for the different cases. Figure 4-11 reveals that the air velocity has a notable influence on 

the constant rate. This behaviour is attributed to the moisture removal mechanism by convection during 

the constant rate period as increasing the velocity increases the Reynolds number and consequently the 

convective mass transfer coefficient. The effect of air velocity was significant during the falling rate 

period hence similar drying time were observed. Since diffusion is regarded as the main mechanism of 

moisture transfer during the falling rate, the mass transfer driving force is the moisture concentration 

gradient between the surface and the internal moisture. The concentration gradient is not a function of 

air flow but of air humidity. Looking at the effect of air velocity on the overall drying time, it can be 

concluded that for the particular case of VIP faecal sludge drying and within the range of study, 

increment in air speed does not have a considerable effect on the total drying time of the sample.  

However, it should be noted that the average range of air velocities employed in this study were low in 

comparison to other convective drying studies. Air flow within the drying compartment was of a laminar 

flow regime, with a Reynolds number of less than 2100. Laminar flow results in low convective heat 

and mass transfer coefficient, which may have resulted in the perceived insignificant contribution of air 

velocity to the drying time. 

 

4.2 Analysis of thermal properties 

This section is aimed at characterising the thermal properties of product obtained from convective 

drying of faecal sludge from pit latrines. The key parameters focused on in this section are thermal 

conductivity, heat capacity and the calorific value. Data pertaining to thermal properties is critical in 

the design of a dryer as the storage and propagation of heat in sludge is governed by these properties.  

4.2.1 Calorific value  

One of the potential end uses of dried faecal sludge is as a biofuel for heating and energy production, 

therefore the calorific value is an essential parameter to characterise. The effect of the drying conditions 

on the calorific value was investigated by determining the calorific value of the samples dried at varying 

temperature and humidity. The effect of air flow rate on the calorific value was not investigated as many 

researchers on convective drying came to the conclusion that it had no considerable effect on the 

calorific value (Vesilind and Ramsey, 1996).  

In order to ascertain the general effect of drying on the calorific value of sludge, an analysis was 

performed on raw sludge that was oven dried to ensured that all the moisture was evaporated. The 

calorific value of the raw sludge was found to average 17.5± 1 MJ/kg dry solids. This value was in the 

range of the calorific values found in literature. A study conducted by Komakech et al. (2014) to 

characterise municipal waste in Kampala found the average calorific value to be 17.3 MJ/kg dry solids. 
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Zuma et al. (2015) analysed the calorific value of 10 VIP latrines in the eThekwini municipality in 

Durban, South Africa and found the average calorific value of 14.3 MJ/kg dry solids.  

The heat capacity of the dried pellets was similar to that of coffee husks and firewood, sawdust, but 

considerably lower than charcoal, used engine oil and diesel, presented in table 2.3. 

Calorific values of dried pellets processed at different temperatures presented in Figure 4-12. 

 

Figure 4-12: Influence of drying temperature on the resulting calorific value of sludge pellets 

dried at constant pellet diameter of 8 mm, relative air humidity of 5 % and air flow 

velocity of 0.03 cm/s 

 

As shown in Figure 4-12, there was no significant variation in the calorific value of sludge dried using 

the different air temperatures with the average value around 12.5 MJ/kg wet solid. This observation 

maybe corroborated to the amount of volatile solids contained by the dried product, which can influence 

the calorific value of a solid fuel. An investigation of the effect of drying air temperature on the volatile 

solids was performed and the results depicted in Figure 4-13. 
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Figure 4-13: Graph displaying the variation of the volatile solids contained in the raw sample 

(wet) and the sludge pellets dried at different temperatures but at constant pellet 

diameter of 8 mm, air relative humidity of 5 % and air flow velocity of 0.03 cm/s 

 

As depicted in Figure 4-13, there was not any significant change in the amount of volatile solids 

contained in the sludge whilst varying the drying air temperature. This observation can be attributed to 

the low air drying temperature range employed for this study which were below 100 ºC. When sludge 

is exposed to higher temperatures, volatile solids are released from the sludge due to thermal 

degradation of the organic matter from the sludge. However, the effect of the thermal degradation 

becomes significant at temperatures higher than 105 ºC. This implies that sludge exposed to 

temperatures greater than 105 ºC can lose a significant amount of volatile solids to effect a considerable 

change in the calorific value. These finding corresponds with the literature in the thermal drying of 

wastewater sludge (Vesilind and Ramsey, 1996).   

The effect that the air relative humidity has on the calorific value was investigated and the results are 

presented in Figure 4-14. 
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Figure 4-14: Influence of drying relative humidity on calorific value of sludge pellets dried at 

constant pellet diameter of 8 mm, temperature of 60 C and air flow velocity of 

0.03 cm/s 

 

As illustrated in Figure 4-14, it can be seen that the air relative humidity, under which this study was 

conducted, has an effect on the resulting calorific value of the dried product. This observation could be 

attributed to the fact that increasing the operating humidity of the drying air results in an increase of the 

equilibrium moisture content, therefore it lowers the calorific value as some of the heat released during 

oxidation would be employed to evaporate the residual moisture.  

 

4.2.2 Thermal conductivity 

Thermal conductivity is an intensive parameter essential in evaluating the ability of a solid material to 

conduct heat. One of the objectives of this study is to evaluate the thermal conductivity of the dried 

sludge and also evaluate its variation with the moisture content within the solid.  

The initial value of thermal conductivity of wet faecal sludge before drying was found to be 

0.55 W/m.K. This value is in the vicinity of the thermal conductivity of pure water of 0.6 W/m.K. This 

is due to the initial high water content of the sludge (80 % of total mass). 

The thermal conductivity of the dried pellets was evaluated and the results are presented in Figure 4-15.  
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Figure 4-15: Influence of drying temperature on thermal conductivity of sludge pellets dried at 

constant pellet diameter of 8 mm, relative air humidity of 5 % and air flow velocity 

of 0.03 cm/s 

There was no considerable variation in the final thermal conductivity of the pellets dried at different air 

temperatures, as shown in Figure 4-15. The average thermal conductivity was considerably lower than 

wet sludge at values as low as 0.044 W/m.K, a value comparable to that of air. This could be indicative 

of the large void spaces in the solid which are occupied by air after the sludge has been dried, leading 

to the decrease of the overall conductivity of the material (Hanson et al., 2000, Bart-Plange et al., 2009). 

The variation of thermal conductivity was analysed by removing the sludge at different time intervals 

during the drying process, and the moisture content and the thermal conductivity were evaluated. The 

variation of thermal conductivity of VIP sludge with the moisture content is presented in Figure 4-16..  

 

Figure 4-16: Influence of moisture content on thermal conductivity of sludge pellets dried at 

constant pellet diameter of 8 mm, relative air humidity of 5 % and air flow velocity 

of 0.03 cm/s 
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It is apparent that moisture content has a significant effect on the thermal conductivity. This is as a 

result of the contribution of water within the sludge The thermal conductivity increased linearly with 

the increase in moisture content (with the coefficient of determination, R2 equal to 0.995). This trend 

agrees with the results obtained by Hanson et al. (2000), on the study of high water content material 

drying. 

4.2.3 Heat capacity 

The ability to predict the heat capacity as drying of the sludge proceeds can be critical, especially for 

the calculation of energy requirements for the design of dryers that are aimed at processing faecal 

sludge. The heat capacity of raw sludge was initially determined to be 3.8 kJ/kg.°C, a value close to 

that of water (~ 4,2 kJ/kg.°C). This observation can be explained by high initial water content of the 

sludge (80 % of total mass). 

The thermal conductivity of the dried pellets was evaluated and the results are presented in Figure 4-17 

 

Figure 4-17: Influence of drying temperature on thermal conductivity of sludge pellets dried at 

constant pellet diameter of 8 mm, relative air humidity of 5 % and air flow velocity 

of 0.03 cm/s 

 

As shown in Figure 4-17, there was no considerable variation in the heat capacity of the pellets dried at 

different air temperatures. The average values of heat capacity of the dried sludge ranged from 200 - 

220 W/m.K. The heat capacity at different moisture contents was investigated by varying the duration 

of the samples in the dryer, and then evaluating their moisture content as well as heat capacity. The 

results are presented in Figure 4-18.  
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Figure 4-18: Variation of heat capacity with respect to the moisture ratio 

 

It is apparent that moisture content has a significant effect on the heat capacity of sludge. the heat 

capacity decreased as the moisture content within the sample decreased. This is as a result of the 

contribution of water within the sludge.  

 

4.3 Nutrient analysis  

One of the possible uses of dried faecal sludge is in agriculture as a fertilizer, therefore it is of 

importance to determine the nutrient content and its variation with respect to the drying conditions. The 

concentration of the nutrients that were analysed to evaluate the value to agricultural of the dried sludge 

were K, P, Mg, Ca, PO4
3-, NO3

-, and NO2
-. Only the effect of drying temperature was investigated as it 

was reported in literature as the main parameter that may alter the nutrient concentration within a sample 

(Sablani, 2006, Morris et al., 2004, Arslan and Özcan, 2008).  

The effect of drying temperature on the total nutrient elements and nutrient ions are illustrated in Figure 

4-19 and Figure 4-20 respectively. 
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Figure 4-19: Variation of the concentration of the concentration of sodium, calcium, magnesium, 

potassium and phosphorus between raw sludge and sludge dried under different 

temperatures 

Figure 4-19 shows that all the nutrient elements that were investigated did not exhibit any variation in 

concentration with drying temperature as the concentrations of nutrients in the raw sludge were similar 

those in the dried pellets. The concentrations for sodium, calcium, magnesium, potassium and 

phosphorus were 15.5, 42.1, 11.2, 8.6 and 4.7 mg / g dry solid respectively.  

 

 Figure 4-20: Variation of the concentration of ammonia, nitrates and orthophosphates between 

raw sludge and sludge dried under different temperatures 
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The concentration of orthophosphates did not show any variation between the initial concentration in 

raw sludge and that in the dried pellets. The average concentration of orthophosphates in the sludge was 

2.5 mg / g dry solid. However, there was a reduction in the nitrates and ammonia concentration between 

the raw sludge and the dried pellets. The reduction in ammonia concentration was most significant as 

the concentration dropped from 24 mg / g dry solid in the raw sludge to around 4.5 mg / g dry solid. 

The concentration of nitrates decreased from 1.5 mg / g dry solid in the raw sludge to around 

0.45 mg / g dry solid. These observed changes in the nutrient concentrations could have either been as 

a result of the increased volatilization of both ammonia and nitrates that occurs as temperature is 

increased or stronger bonding of the compounds to the solid matrix as temperature was elevated.  

It is evident that faecal sludge contains nutrients that are of agronomical value. Table 4-1 summarises 

the results of this study and also compares with literature values. 

Table 4-1: Comparison between nutrient concentration from literature and that found in this 

study 

Nutrients Raw sludge] Dried product Nikiema et al. 

(2013) 

Mnkeni and 

Austin (2009) 

Komakech et al. 

(2014) 

[mg/kg dry solid] [mg/kg dry solid] [mg/kg dry solid] [mg/kg dry solid] [mg/kg dry solid] 

P 71 72 12.4 3 2.7 

K 8.7 8.6 6.1 44 19.5 

Ca 43.5 42.1  4  

Mg 11.2 11.2  7.9  

PO4
3- 2.4 2.3   0.37 

NO3
- 0.5 0.5 2.9   

NH3 24 4.5    

      

The concentration of total phosphorus was significantly higher compared to that found in literature as 

showed in Table 4-1. The marked discrepancy could be as a result of the difference in diet as the amount 

on chemical is greatly influenced by the diet, health and age of individuals and therefore data available 

is greatly dependent on the source population. This difference can also be seen from the different values 

of total potassium presented in by Nikiema et al. (2013) in their study of using pellet faecal sludge as 
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fertilizer Mnkeni and Austin (2009) when analysing the fertiliser value of contents from urine diversion 

toilets.  

Compared to popular manure used for agriculture, the concentration of nutrients within the sludge found 

in this study were greater some the same nutrients detailed in Table 2-4. In particular, the nutrients 

concentrations are higher compared to cattle manure which is commonly used as supplements to 

inorganic fertiliser and also as a soil conditioner.  

 

4.4 Empirical modelling of the drying of VIP sludge 

Mathematical modelling is crucial for predicting and optimising drying process. Accurate and reliable 

models are useful in the design and utilisation of drying equipment. The objective of this section is to 

propose a mathematical model that describes the drying kinetics of faecal sludge as a function of the 

drying air parameters by investigating the applicability common empirical drying models in describing 

the experimental results. These empirical models are regarded by various authors in the drying field as 

simple alternatives to Fick’s second law of diffusion (Yu et al., 2009, Vega et al., 2007, Simal et al., 

2005). These models describe the relationship between the moisture content of the material and the 

drying time at various drying environments (air temperature, air relative humidity, air flow rate and 

sample size). Several empirical models have been widely used to describe isothermal convective drying 

by various authors, mostly in the food industry (Doymaz, 2008, Karathanos, 1999, Doymaz, 2005, Van 

Boekel, 2008, Vega et al., 2007) and also for the modelling of sewage sludge (Qian et al., 2011, 

Arlabosse et al., 2005, Yu et al., 2009). It is of interest to evaluate the applicability of these models in 

describing the drying of faecal sludge from VIP toilets.  

The kinetic drying data obtained from the pellet and flat slab drying was fitted to some common 

empirical drying models, which were the Newton model, the Page model, the modified Page model, the 

Two-term exponential model and the Logarithmic model. These models where chosen because they are 

regarded as the most accurate in describing various food material as well as sludge from wastewater 

treatment (Léonard et al., 2005, Kucuk et al., 2014, Celma et al., 2012). An optimization tool, SOLVER 

(GRG2 method), included in Microsoft Excel 2013, was used for the regression of the parameters of 

each of the models by minimising the sum of the square differences between the experimental and the 

calculated values.  

Figure 4-21 shows the variation between the predicted moisture content ratio from the models and the 

experimental values of pellets. 
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Figure 4-21: Graph predicting the Moisture Ratio versus experimental Moisture Ratio for 

different kinetic empirical models 

 

From Figure 4-21, it can be observed that the Newton model exhibited the largest deviation from the 

experimental data, followed by the Logarithmic model. The Page model and the Modified Page were 

found to give better predictions of the experimental moisture as compared to the rest of the models with 

the root mean square error (RMSE) and the coefficient of regression (R2) values used as the goodness 

of fit indicators. The Page model provided the best results as it had the lowest values of RMSE and 

highest value of R2 for the different temperatures at each set of drying conditions for both configurations 

investigated. The Newton model was the least accurate with the largest RMSE and lowest R2 values as 

can be seen in Table 4-2. This result agrees with the results obtained by Celma (2011) during the 

investigation of drying characteristics of sludge from tomato processing plants.  

It can be observed from Figure 4-21 that the models tend to under or overestimate the experimental 

moisture ratio at various stages of the drying process. At an MR of 0.26 or lower, there is a transition 

of all models analysed from under estimation of the experimental data to overestimating it. This 

behaviour was also observed by Simal et al. (2005) when the empirical models were used to predict the 

drying kinetics of kiwi fruit. The Logarithmic and the Two-term models underestimate the experimental 

data from the initial stages of the drying process (MR = 1) to a region where the moisture ratio, MR, is 

approximately 0.26. Whilst the Page model and the Modified Page exhibit two transition points, one at 

MR of 0.77 and the other at 0.26.  
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Table 4-2: Regressed parameters of the empirical model analysed for pellets 

Model Temperature Model constants RMSE R2 

 40 k = 0.01489 0.06172 0.963 

Newton  60 k = 0.01934 0.05573 0.965 

 80 k = 0.02892 0.04524 0.972 

     

 40 k = 0.00285                  n = 1.372 0.01306 0.997 

Page 60 k = 0.00466                  n = 1.341 0.01174 0.998 

 80 k = 0.00482                  n = 1.474 0.01729 0.996 

     

 40 k = 0.01340                  n = 1.373 0.01306 0.997 

Modified Page 60 k = 0.01825                  n = 1.341 0.01174 0.998 

 80 k = 0.01589                  n = 1.479 0.01729 0.996 

     

 40 k = 0.02127                  a = 1.876 0.02572 0.991 

Two-term 60 k = 0.02758                  a = 1.869 0.02013 0.993 

 80 k = 0.04385                  a = 1.993 0.01837 0.994 

     

 40 k = 0.01279                  a = 1.063                     c = -0.0634 0.04057 0.970 

Logarithmic  60 k = 0.01863                  a = 1.014                     c = -0.0142 0.04392 0.969 

 80 k = 0.02671                  a = 1.031                     c = -0.0304 0.03591 0.977 
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The Page model described the drying data the best of all the models investigated and the model 

constants, k and n, were correlated with temperature and sample size. This was done with the goal of 

developing a simple correlation that predicts the constants that can be used to determine the moisture 

ratio for different air temperatures and pellet diameters. These two parameters were considered because 

it was observed from the drying kinetics that the temperature and pellet diameter had a significant effect 

on the drying rate. In contrast, the air velocity had a negligible effect on the drying time hence it was 

not considered. The contribution of air relative humidity was not considered because of the assumption 

that most driers operate with relatively dry air.  

These assumptions simplified the mathematical formulation of the resulting correlation. The variation 

with temperature of the Page model’s k constant was investigated on both the flat slab configuration 

and the pellets with the results shown in Figure 4-22. 

 

Figure 4-22: Variation of the k parameter from the Page model as a function of temperature for 

both flat slab configuration and pellets 

 

The k values increased with increasing temperature. However, the n constant of the page model did not 

show any trend as the temperature and pellet diameter was changed as shown in Table 4-3. This 

observation is consistent with the results found by Doymaz et al. (2006) when they investigated the 

dying characteristics of dill and parsley leaves using air temperatures between 40 ºC and 70 ºC. Other 

studies that came to the same observation include the investigation of hot-air drying of cauliflower by 

Sharma et al. (2008) and the modelling of the hot-air drying kinetics of red bell pepper by Vega et al. 

(2007). These studies used temperatures between 40 ºC and 80 ºC, which is the same range of 

temperature used for this project. 
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Table 4-3: Variation of Page model constant, n, with the drying conditions 

Drying conditions Page model constant, n 

Varying drying temperature at constant air velocity of 0.06cm/s, air relative humidity of 5% and 

pellet diameter of 8 mm   

40°C 1.37 ±0.3 

60°C 1.34 ±0.3 

80°C 1.47 ± 0.5 

.Varying pellet diameter whilst drying at constant temperature of 60°C, air relative humidity of 5% 

and velocity of 0.06cm/s, 

10 mm 1.34 ± 0.2 

12 mm 1.44 ± 0.6 

14 mm 1.37 ± 0.4 

  
 

The variation of the Page constants with temperature and diameter was investigated and equation (4-1) 

was proposed to determine the moisture ratio at a particular drying time, drying temperatures and pellet 

diameter. The formulation of the drying model is presented in Appendix D. 

Where T is the drying temperature (°C) 

t is the time (min)  

a, b and c are constants  

d is a pellet diameter (mm)  

 

The model constants a, b and c were regressed for using non-linear regression coupled with multiple 

regression analysis and were found to be 5×10-5, -1.081 and 1.6622 respectively. 

The results of the developed model estimating the moisture ratio at different temperature and pellet 

diameter are shown in Figure 4-23 and Figure 4-24. 

 nbc tTadMR   (4-1) 
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Figure 4-23: Values for the experimental and predicted moisture ratio for the developed model 

at different temperatures for convective drying of faecal sludge at constant pellet 

diameter of 8 mm, relative air humidity of 5 % and air flow velocity of 0.03 cm/s 

 

 

Figure 4-24: Values for the experimental and predicted moisture ratio for the developed model 

at pellet diameters for convective drying of faecal sludge at constant temperature of 

60 ºC, relative humidity of 5% and air flow velocity of 0.03 cm/s. 
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The model developed agreed well with the experimental results when using air with low relative 

humidity (5%) for the temperatures and pellet diameters investigated. The page model and the 

developed model are compared in Table 4-4 

Table 4-4: Comparison of the goodness of fit parameters between the Page model and the 

developed model 

Drying conditions 

RMSE R2 

Page model Developed model Page model Developed model 

Varying drying temperature at constant air velocity of 0.06cm/s, air relative humidity of 5% and 

pellet diameter of 8 mm 

40°C 0.01096 0.03157 0.997 0.979 

60°C 0.01687 0.02047 0.998 0.992 

80°C 0.01826 0.04371 0.996 0.971 

Varying pellet diameter whilst drying at constant temperature of 60°C, air relative humidity of 5% 

and velocity of 0.06cm/s, 

10 mm 0.02174 0.03694 0.994 0.984 

12 mm 0.01893 0.05893 0.995 0.965 

14 mm 0.02627 0.09385 0.987 0.892 

 

The developed model predicted the drying kinetics well at different temperatures despite having lower 

and higher RMSE values compared to the Page model. The lowest R2 value for predicted model was 

0.971 obtained at 80°C. This implies that the model is better compared to the Newton model which had 

the highest R2 value of 0.971 as shown in Table 4-2. However, the deviations became larger when the 

pellet diameter was changed as shown in Figure 4-24 with the highest R2value being 0.965. The inability 

of the developed model to closely predict the experimental data could be as result of the assumption 

made during the formulation that the model parameter, n, had a constant value of 1.36. This assumption 

was made because the Page model parameter, n, did not exhibit any trend when the temperature and the 

sample diameter was varied hence an average value was used.  

Despite the Page model predicting well the experimental data as compared to the developed model, its 

inability to make use of input such as the drying conditions (temperature and sample diameter) makes 

the developed model have more practical relevance. 
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5 CONCLUSIONS AND RECOMMENDATIONS  

Convective drying of VIP sludge was investigated by varying the external drying parameters which 

were temperature, relative humidity and air velocity, as well as the size of the sample (changing the 

diameter of pellets). Faster drying was achieved by increasing air temperature and velocity, and also by 

decreasing air relative humidity and sample size. Under the explored conditions, the most influencing 

parameters on the drying kinetics of VIP sludge were the temperature, pellet diameter and air relative 

humidity. An increase of temperature from 40 to 80 °C reduced the drying time by 53%, from 190 to 

90 minutes respectively. Increasing the relative humidity of the air from 5% to 25% resulted in 

lengthening the drying time from 135 to 220 minutes which corresponds to an increase of 63%. The air 

velocity had a relatively low effect on the drying time as increasing the velocity by fourfold resulted in 

less than 20 minutes decrease in the total drying time. However, it should be noted that the range of air 

velocity used in this study was low relative to various cases in literature. This may have resulted in the 

perceived observation of air velocity having a negligible influence on the total drying rate. In order to 

achieve high air speeds, the drying chamber of the rig could be reduced in volume. 

The drying curve depicted two typical drying periods, the constant rate period and the falling rate period. 

Increasing the air temperature and velocity, whilst reducing the relative humidity resulted in an increase 

of the drying rate during the constant rate period. The critical moisture content was strongly affected by 

the drying temperature and relative humidity. High temperature and low humidity yielded prolonged 

constant rate period. This information is of consideration in the drying process as the constant rate 

period is easier to control through the operating conditions. 

The effective diffusivity of faecal sludge was determined graphically through the analytical solution of 

Fick’s second law of diffusion. The effective diffusivity of faecal sludge increased with the increase in 

temperature. The effective moisture diffusivities ranged between 7.8×10-8 and 2.1×10-7 m2/s in the 

temperature range of this study. However, the assumption of constant sample thickness during drying 

was made to determine the effective moisture diffusivity which was not the case according to visual 

observations. More accurate results of the effective moisture diffusivity could be evaluated by taking 

into account the eventual sample shrinkage. 

The applicability of common empirical models that describe the moisture content of a sample as a 

function of time was investigated. The experimental data were fitted to the Newton’s model, the Page 

model, the modified Page model, the two-term exponential model and the Logarithmic model. The Page 

model was found to most accurately predict the drying kinetics of sludge as suggested by the lowest 

RMSE value of not more than 0.017 and the highest R2 value of at least 0.983. In order to take into 

account, the effect of drying air temperature and sample diameter on constants of the Page model, the 
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parameters of the model were correlated with respect to the temperature and pellet diameter. These had 

a strong influence on the k constant but non on the n value to which the average value was 1.36. The 

developed model predicted the experimental data well over the temperature and sample diameter 

range despite having lower R2 values compared to the Page model. The validity of the model could 

be enhanced by increasing the temperature and pellet diameter. 

The thermo-physical properties of the dried sludge studied in this project included the thermal 

conductivity, heat capacity and calorific value. The thermal conductivity of the fresh sludge (~80 %) 

was 0.55 W/m.K and exhibited a linear decrease as the sample was dried. The average conductivity of 

the final product was 0.04 W/m.K, a value similar to common insulators such as polyurethane, 

vermiculite and fibreglass which have thermal conductivities of 0.03, 0.07 and 0.035 W/m.K Heat 

capacity also showed a similar dependence with respect to the moisture content but without exhibiting 

a linear relationship. The heat capacity decreased from 3 866 to 211 J/kg.K. The average calorific value 

obtained was 12 MJ/kg, a value which is in the range with the calorific value of wood and coffee husks. 

This implies that faecal sludge can be a possible alternative source of energy.  

The effect of the drying on the nutrient concentration of sludge was investigated in order to evaluate 

the potential reuse of the dried product in agriculture. The concentrations of K, P, Mg, Ca, PO4
3-, NO3

-

and NO2
- were analysed on a dry basis. The nutrient concentrations that were investigated did not show 

any significant variation between the raw and the dried samples except for ammonia, which decreased 

from 24 mg / g dry solid in the raw sludge to around 4.5 mg / g dry solid. The nutrient concentration of 

the macronutrients K, P, Mg and Ca, were generally higher than those of animal manure therefore dried 

faecal sludge can be used as fertiliser supplement.  

Precaution should be taken in reusing faecal sludge as it contains harmful pathogens, Ascaris being the 

most resistant. The degree of pasteurisation of the dried sludge was not investigated due to the 

unavailability of Ascaris within the sample that was used. Future work should include the introduction 

of a known quantity of Ascaris eggs into the sample in order to evaluate the pasteurisation effect of 

convective drying. 
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M. A. 2004. Moisture and temperature evolution during food drying: effect of variable 

properties. Journal of Food Engineering, 63, 117-124. 

RUIZ-LÓPEZ, I. I. & GARCÍA-ALVARADO, M. A. 2007. Analytical solution for food-drying 

kinetics considering shrinkage and variable diffusivity. Journal of Food Engineering, 79, 208-

216. 

SABLANI, S. S. 2006. Drying of fruits and vegetables: retention of nutritional/functional quality. 

Drying technology, 24, 123-135. 

SACHS, J. D. 2012. From millennium development goals to sustainable development goals. The 

Lancet, 379, 2206-2211. 

SAEED, I., SOPIAN, K. & ABIDIN, Z. Z. 2008. Drying characteristics of roselle (1): mathematical 

modeling and drying experiments. Agricultural Engineering International: CIGR Journal. 

SAPIENZA, F. 2005. Thermal drying of wastewater solids. Proceedings of the Water Environment 

Federation, 2005, 690-700. 

SERTH, R. W. 2007. Process heat transfer: principles and applications, Elsevier Academic Press New 

York. 

SHANNON, D. & BROWN, W. 1969. Losses of energy and nitrogen on drying poultry excreta. Poultry 

science, 48, 41-43. 

SHARMA SUNIL, S. A. 2013. Technologies for energy recovery from faecal waste - Technical and 

Finance analysis for Gasification. 

SHARMA, U., SINGH, C., KAUR, G., OBEROI, D. P. & SOGI, D. S. 2008. DRYING 

CHARACTERISTICS OF CAULIFLOWER. Advances in food sciences, 30, 63-69. 

SHARPE, N. 2010. Development of a Novel Plan for Emptying Pit latrines in Urban Slums. Masters of 

Philosophy in Engineering, University of Cambridge. 

SIBBALD, I. 1979. The effect of the drying procedure on excreta energy values for poultry and other 

species. Poultry Science, 58, 1392-1394. 

SILVA, J. 2000. Inorganic Fertilizer Materials. Plant Nutrient Management in Hawaii’s Soils, 

Approaches for Tropical and Subtropical Agriculture, 117-120. 

SIMAL, S., FEMENIA, A., GARAU, M. & ROSSELLÓ, C. 2005. Use of exponential, Page's and 

diffusional models to simulate the drying kinetics of kiwi fruit. Journal of food Engineering, 

66, 323-328. 

SIRIWATTANANON, L. & MIHARA, M. 2008. Efficiency of granular compost in reducing soil and 

nutrient losses under various rainfall intensities. Journal of Environmental Information Science, 

36, 39-44. 

SISTANI, K., ROWE, D., MILES, D. & MAY, J. 2001. Effects of drying method and rearing 

temperature on broiler manure nutrient content. Communications in soil science and plant 

analysis, 32, 2307-2316. 

STASTA, P., BORAN, J., BEBAR, L., STEHLIK, P. & ORAL, J. 2006. Thermal processing of sewage 

sludge. Applied Thermal Engineering, 26, 1420-1426. 

STILL, D., SALISBURY, R., FOXON, K., BUCKLEY, C. & BHAGWAN, J. The challenges of 

dealing with full VIP latrines.  Proceedings WISA Biennial Conference & Exhibition, Durban 

ICC, South Africa, 2005. 18-22. 

STRUMILLO, C. 1986. Drying: principles, applications, and design, CRC Press. 

TAO, T., PENG, X. & LEE, D. 2005. Thermal drying of wastewater sludge: Change in drying area 

owing to volume shrinkage and crack development. Drying technology, 23, 669-682. 

THIAGARAJAN, I. V. 2008. Combined microwave-convection drying and textural characteristics of 

beef jerky. Citeseer. 

THOMAS, J., PODICHETTY, J., SHI, Y., BELCHER, D., DUNLAP, R., MCNAMARA, K., 

REICHARD, M., SMAY, J., JOHANNES, A. & FOUTCH, G. 2015. Effect of temperature and 

shear stress on the viability of Ascaris suum. Journal of Water Sanitation and Hygiene for 

Development, 5, 402-411. 

TREYBAL, R. E. 1980. Mass-transfer operations, McGraw-Hill New York. 



 

72 

 

VAN BOEKEL, M. A. 2008. Kinetic modeling of food quality: a critical review. Comprehensive 

Reviews in Food Science and Food Safety, 7, 144-158. 

VASIĆ, M., GRBAVČIĆ, Ž. & RADOJEVIĆ, Z. 2012. Methods of determination for effective 

diffusion coefficient during convective drying of clay products”. Clay Minerals in Nature–

Their Characterization, Modification and Application. InTech Open Science. 

VAXELAIRE, J., BONGIOVANNI, J., MOUSQUES, P. & PUIGGALI, J. 2000. Thermal drying of 

residual sludge. Water Research, 34, 4318-4323. 

VEGA, A., FITO, P., ANDRÉS, A. & LEMUS, R. 2007. Mathematical modeling of hot-air drying 

kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering, 79, 1460-1466. 

VESILIND, P. A. & RAMSEY, T. B. 1996. Effect of drying temperature on the fuel value of wastewater 

sludge. Waste management & research, 14, 189-196. 

VINNERÅS, B., PALMQUIST, H., BALMÉR, P. & JÖNSSON, H. 2006. The characteristics of 

household wastewater and biodegradable solid waste—a proposal for new Swedish design 

values. Urban Water Journal, 3, 3-11. 

WANG, N. & BRENNAN, J. 1995. A mathematical model of simultaneous heat and moisture transfer 

during drying of potato. Journal of Food Engineering, 24, 47-60. 

WERTHER, J. & OGADA, T. 1999. Sewage sludge combustion. Progress in energy and combustion 

science, 25, 55-116. 

WHO. 2015. Key facts from JMP 2015 report [Online]. Available: 

http://www.who.int/water_sanitation_health/monitoring/jmp-2015-key-facts/en/ [Accessed 

23/09/2016 2016]. 

WOOLLEY, S., COTTINGHAM, R., POCOCK, J. & BUCKLEY, C. 2014. Shear rheological 

properties of fresh human faeces with different moisture content. Water SA, 40, 273-276. 

YU, W., HU, N., LI, P., HU, Y., XU, Q., WANG, Q., YANG, J., YANG, G. & YUE, Y. Mathematical 

Modeling of Drying Characteristics of Sewage Sludge.  2009 Asia-Pacific Power and Energy 

Engineering Conference, 2009. 1-4. 

ZUMA, L., VELKUSHANOVA, K. & BUCKLEY, C. 2015. Chemical and thermal properties of VIP 

latrine sludge. Water SA, 41, 534-540. 

http://www.who.int/water_sanitation_health/monitoring/jmp-2015-key-facts/en/


 

73 

 

APPENDIX A STANDARD OPERATING PROCEDURES 

A - a) Drying Rig 

Drying is a mass transfer process consisting of the removal of a solvent by evaporation from a solid. A 

source of heat and an agent to remove the vapor produced by the process are often involved. In the most 

common case, a gas stream is used to apply the heat by convection and carries away the vapor. When a 

piece of wet material is exposed to hot air which is not saturated (its relative humidity is less than 

100%), evaporation takes place from its surface. At a given temperature the rate of evaporation is 

dependent on the vapor pressure difference between the air close to the material and that of the more 

mobile air surrounding it. The drying rig allows control of drying air temperature, flow rate and moisture 

content. 

Brief description of the rig 

Dry air is humidified by counter current contact with water in the packed column. The humidity of the 

exit air can be varied by changing the water temperature and water flow rate entering the packed 

column. The air flow rate is determined using an orifice and the pressure difference across it is measured 

by a differential pressure transducer. The humidity of the air is determined by a humidity transducer. 

The humidified air is then heated to the desired temperature before it enters the drying chamber where 

the sample is to be dried. The drying pan is attached to a mass balance so that the mass of the sample 

may be monitored during the experiment. The mass balance is connected to a computer which will track 

the loss in mass of the sample with time.  

|Safety precautions  

 Ensure that all electric cables are not in contact with water. 

 Do not switch on the heater when there is no air flow. 

 Ensure that there is enough water in the water bath and the heater is fully submerged. 

 Ensure that the door of the drying chamber is completed closed during the experiment 

 

Experimental procedure 

Start up 

1. Switch on the computer and open the appropriate software (Lab-view) 

2. Open the exit valve for the packed column 

3. Open the gas valve and set to the desired air flow rate. Allow the reading to stabilize 

4. Switch on the water bath.  

5. Set the water bath temperature and flow rate 

6. When all set parameters are stable, place the sample in the drying chamber. 

7. Start recording on the data logging software (Lab-view) 
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Shut down 

1. Switch off the heaters 

2. Switch off the water bath 

3. Close the air supply 

 

Microwave Plasma Atomic Emission Spectrometer 

1. Scope and Application 

 
Operation of the Agilent 4100 MP-AES involves the use of compressed air, high microwave energy 

and hazardous materials including corrosive fluids and flammable liquids.  The plasma is extremely hot 

(about 6000 °C) and operates using high levels of microwave energy.  The plasma emits high intensity 

light. The microwave excitation assembly is designed to reduce microwave radiation to safe levels while 

still allowing easy installation of the torch and viewing of the plasma.  

The various indicator lights are color coded to represent the status of the instrument. 

A green light indicates the instrument is in normal/standby mode 

An orange light indicates that a potential hazard is present 

A blue light indicates that operator intervention is required 

A red light warns of danger or an emergency 
 

The primary gas used is nitrogen, which is the supply gas for the plasma and nebulizer gas supply 

Instrument grade quality required. 

A small quantity of argon is used only in the plasma ignition cycle.   

Oil free compressed air is used for the pre optics protection gas. 

Pic page 24 and 25 

 

Sample preparation 

Weigh a well-mixed sample to the nearest 0.001g in the digestion vessels. For sludge, fecal samples use 

between 0.1g and 0.5g.  For oil or oil contaminated samples use no more than 0.25g. 

If the sample cannot be well mixed and homogenized, then oven dry at 60 °C or less and then grind the 

sample. 

Add 12ml of Aquaregia (9ml Conc nitric acid + 3ml Conc hydrochloric acid) to the samples in the 

digestion vessels. 

Dilute each sample to 50ml (then centrifuge) and test using the MP-AES. 

The microwave program is set as follows: 

04:00min @1000w@90°C 

05:00min@1000 w @130°C 

04:00min@1000 w @190°C 

10:00min@1000 w @190°C 

30:00min@1000 w @30°C 

Total time 1:03:00 

04:00min @1000w@90°C 

60:00min@1000 w @130°C 

10:00min@1000 w @40°C 

30:00min@1000 w @30°C 
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To install the MP Expert Software 

Log on to the instrument computer with Administrative rights. (Username-Admin/password-

3000hanover). 

Insert the MP Expert Software disk in your CD Rom drive. The software will automatically start. 

Follow the instructions on the screen. 

Click Yes to restart the computer if prompted. 

Plug the USB cable into the USB port and then into a USB port on the computer. 

Once installation is complete, you will need to register your software.  To start the software, click the 

Windows START button, Then ALL PROGRAMS>Agilent>MP Expert.  

Windows START button then choose Programs>Agilent>MP Expert>MP Expert Help.  

 

Analysis Checklist 

Turn on the MP-AES and software 
Prepare for analysis 

Calibrate the MP-AES 

Create/open a worksheet 

Develop a method 

Run samples 

Print a report 

Turning on the MP-AES and Software 

Check the exhaust and intake lines are secured to the MP-AES. 

Ensure the gas lines are connected to the MP-AES and the gas supplies are turned on and set to the 

correct pressures (4-6 bars).  Switch on the nitrogen gas generator. 

Check that the USB and power cables are plugged on.  

Switch on the compressor and the extractor system. 

 
Instrument 

Turn on the MP-AES. 

Switch on the computer(Username-Admin/password-3000hanover) 

To start the MP Expert software, click the Windows start button and then choose 

Programs>Agilent>MP Expert>MP Expert. The main index window will appear. 

Click on instrument. 

Red blinking zones on the instrument model on the pc stipulates errors. Check the error bar reading 

on the left.  Purge the instrument to remove O2. 

Click-Start Purge(1-2mins to purge) 

Blinking should stop after purging. 

 

Torch 

Check that the pre optics window is clean and correctly installed and that the interlocked is engaged. 

Insert the torch with the outstanding lever facing you and completely close the torch handle. Do not 

touch the torch-this will create hotspots.  Fit the spray chamber socket to the ball joint on the base of 

the torch and secure using the torch clamp. Monitor pic on pc-red zones will appear if it is inserted 

incorrectly. 

 

Pump 

Check that all tubing on the spray chamber, nebulizer and peristaltic pump are correctly connected. 

See pic. 

Inlet tubing should be placed in a beaker of 500ml de-ionised water. 

Go to software-Click on –Run pump icon (the lower icon). 

Click on fast run (run for 2 mins) and look for a flow. 

Click on Pump Off. 

Check icons on left are all green. 

Plasma 

Ensure that the Plasma Enable Switch is in the Enable state (pushed in). 

Click-Plasma On(6000 degrees celsius) 
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Inspect flame-must taper uniformly.  Must have only the following colors (orange on the outside-pink 

and the blue in the middle). 

Switch off if it is not correct. 

Leave the plasma on while continuing with the calibration. 

 

Preparing for Analysis 

Click the Plasma button in the MP Expert software, press F5 or choose Plasma on from the arrow 

under the plasma button. 

Ensure that the peristaltic pump is correctly set up. 

Place the sample tubing from the peristaltic pump into the rinse solution and the drain tubing into the 

drainage vessel. 

Click the pump button in the MP-Expert software and choose Normal(15rpm) from the arrow under 

the pump button. The pump will be initialized and the solution will begin aspirating. 

It will take approx 30 mins for the MP-AES to warm up. 

The plasma will take 10-15 secs to ignite. If it fails refer to the troubleshooting guide. 

The plasma cannot run without the spray chamber and the nebulizer gas supply connected.  Doing so 

will damage the torch. 

 

MP-AES Calibration 

Ensure a standard glass concentric nebulizer, a single pass spray chamber and a standard plasma torch 

are installed. Use white/white peristaltic pump solution tubing and blue/blue tubing for the drain. The 

tubing tab color denotes the tubing size. 

 Place the solution inlet tubing into the wavelength calibration solution and allow the sample to reach 

the plasma 

Click the instrument button 

Click Optics Calibration 

Click Calibrate Instrument.  The torch will be aligned then a wavelength calibration and a calibration 

check will be performed automatically. 

After a short while, an indication of the success or failure of the calibration check will appear, as well 

as an indication of the wavelength offsets. 

If the calibration fails, check the sample introduction system.  If the system seems fine, prepare a new 

wavelength calibration solution and try again. 

Recommended values for the settings are given on the Conditions. 

 

Test 

Tick all tests except the last. 

Click RUN TEST 

Export to pdf and save. 

Creating/Opening a Worksheet 

Click NEW from the START page or the FILE menu. 

A list of recently used files will appear otherwise you may BROWSE for more. 

Opening an existing worksheet 

 Click OPEN from the Start page or the File menu. 

 A list of recently used files will appear otherwise you may BROWSE for more. The OPEN dialog 

box will be displayed in this instant. 

 Choosing rack type 

Autosampler right click/Rack type/no rack 

Go to bottom rack/right click/rack type/eg 11 samples. 

Creating a new worksheet from a template 

 Click NEW Form on the Start page or New Form Template from the file menu. 

 A list of recently used files will be presented, otherwise you may BROWSE for more files. The 

New Form Template dialog box will be displayed in this instance. 

 The Worksheet window will appear with the new worksheet loaded. 
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Developing a Method 

 

1. Open a new worksheet or one from a template. 

2. On the “elements” page.  Select the elements from the “Element” drop down box or type the 

element name or symbol.  Grey blocks-elements can be tested. White block-elements cannot be 

tested. 

 
3. Click ADD or press enter on your keyboard. 
4. The element will appear in the table with the primary line and default settings selected.  Make any 

required changes to each element including selecting a different wavelength, entering additional 

info to the label column, selecting the type of sample. 

5. Check the possible interferences.  Choose wavelengths with a high intensity (expressed in count 

per sec-cps) and those with less interference as possible. Click on bar graph to see the different 

graphs. 

6. Choose as many wavelengths as required (2-3 at least). 

7. Click conditions to modify both common settings for the run and settings for each element. 

(3replicates/15rpm/15sec/stabilization time 15sec or greater. 

8. Choose analyte. 

9. Read time set at 3 sec (100ppb=5sec as a guide) lowppb sample=high read time and visa versa. 

10. Click ‘optimize’ place inlet tubing in to a med to high std eg 20ppm to optimize standard. Let it 

rinse out a bit. 

11. Click on position of std in autosampler view and the start. Do this for each std to be optimized.  

12. Click on optimize- neb pressure(look for peak)/viewing position(look for peak). 

13. Click sequence to specify the end of run actions, number of samples and edit the sample labels. 

14. SPS3  Sample Preparation System , click the ‘autosampler’ tab to select the racks and probe depth 

if needed. 

 

Running a sample 

1. Click the ANALYSIS tab and do the following. 

2. Ensure your samples are selected. This will be indicated by a check next to the RACK:Tube 

column. To select all solutions, select the checkbox next to the Rack:Tube title. 

3. Click the RUN icon in the toolbar (or PRESS the SHIFT+F8) to begin the analysis, and follow the 

subsequent prompts. 

 

Printing a report 
Click Report on the toolbar or file>Report 

Choose whether you want to print or preview the report or save the report as a PDF file. 

Select the report template and click OPEN. 

Click the PRINT button to generate a report as specified. 
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Turning off the Agilent 4100 MP-AES 

 Rinse the spray chamber by aspirating water for a few minutes. 1% nitric acid. 

 Extinguish the plasma by choosing ‘PLASMA OFF from the Plasma button drop down arrow or 

pressing SHIFT +F5 on the keyboard. 

 Remove the solution tubing from the solution to prevent flooding of the spray chamber, Choose 

(normal-15 rpm) from the pump drop down button and pump any remaining liquid from the 

sample introduction system and inlet tubing. Turn the pump off when there is no more liquid 

flowing. 

The green Plasma enable button, located infron tof the MP-AES is intended for emergency only. If it 

is used you will have to reset the plasma enable button to ‘on’ position before the plasma can be re-

ignited. 

 To increase the pump tubing lifetime, loosen the pressure on the peristaltic pump tubing by 

releasing the pressure bars, and lifting the tubing out of the grooves in the tube retainer.PIC page 

39 

 Push up the pressure bar tensioners. This releases them from the pressure bars 

 Allow the pressure bar to swing backwards 

 Lift the tubing out of the grooves in the tube retainer. 

 

Routine Maintenance 

Daily: 

1. Check and if necessary empty the drain vessel 

2. Clean the surface of the equipment-clean all spills immediately 

3. Inspect the pump tubing and replace if it has lost its elasticity, 

4. Unclip the pump tubes when pump not in use. 

 

Weekly 

1. Inspect the torch for cleanliness. Clean as necessary. 

2. Inspect the spray chamber for cleanliness. Clean as necessary. -soak nebulizer and spray chamber 

overnight in 400ml of Aquaregia which is used to remove organics. 

3. 32%HCL 3:1 55% Nitric acid (300ml HCL:100ml Nitric acid 

4. Clean the nebulizer 

5. Inspect the pre-optics window for cleanliness. Clean or replace as necessary 

 

Monthly 

Clean the air filter on top of your MP-AES 

Perform an instrument calibration 

Inspect the external gas supply system for leaks including the tubing connected to the MP-AES. 

Replace any damaged leaking worn out components. 

 

Standards Na, Mg, Ca, K.  Making up 200ppm of each standard from 1000ppm.   

 Take 50ml from concentrated 1000ppm individual standards and place in a 250 volumetric 

flask and top with distilled water to give you 200ppm. 

 Combine all 4 individual standards (Na, Mg, Ca, K) to give you a stock solution of 

1000ml(200ppm) 

 Then make 5 different concentrations from the stock. See column 1 and 2. Concentration of 

the individual salts will be the concentration of the mixed standard divided by the number of 

salts (4). 

Volume from stock(1000ppm) 

to dilute (mL) 

Concentration of Mixed 

Standard (ppm) 

Concentration of individual 

Standard (ppm)  

50 200 50 

200 160 40 

100 80 20 

50 40 10 

25 20 5 
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Phosphate and total Phosphorus Analysis 

(Cat. No. 1.14848); (Cat. No. 1.14543) 

 

Scope and field of application 

 

The measurement of total phosphorus and phosphate is essential for performance studies on the struvite 

reactor. The phosphate concentration in influent and effluent gives indication on the performance of the 

reactor operation whereas the total P values (influent and effluent) demonstrate the effectiveness of the 

filtration material used. The recovery can be calculated based on these measurements.  

(Phosphate) Measuring range 0.02 – 11.46 mg/L P2O5 

(Total Phosphate) Measuring range 0.11 – 11.46 mg/L P2O5 

 

Principle  
In sulphuric solution orthophosphate ions react with molybdate ions to form molybdophosphoric acid. 

Ascorbic acid reduces this to phosphomolybdenum blue (PMB) 

that is determined photometrically. 

 

Interferences 
Sample for phosphate analysis must be pre-treated by filtration (0.45µm) to remove most of turbidity 

(interferes with photometric measurement) 

In case of total P sample mustn´t be filtrated! The filtration step would remove already precipitated 

struvite during urine storage and thus false the analysis 

In any case urine should be diluted at least 1:100 to avoid matrix effects 

(Other interferences are mentioned in operational manual of test kits) 

 

Safety Precuations  
Handle concentrated acid with cares 

Always use safety goggles, gloves and laboratory coat while working in laboratory  

After the analysis clean bottles and beakers with clear water keep it for drying 

Dispose the used gloves after completion of analysis 

Clean the hands using antiseptic soap  

Disinfect hands after washing with soap 

Avoid spillage and contact with skin.  In the latter case use copious washings with cold water and call 

for medical attention. 

 

Apparatus 
Heating Block for Total P measurement 

Spectrophotometer 

Glass ware: Use acid washed glassware for determining low concentrations of orthophosphates.  

Phosphate contamination is common because of its absorption on glass surfaces.  Avoid using 

commercial detergents containing phosphate.  Clean all glassware with hot dilute HCL and rinse well 

with distilled water.  Preferably reserve the glassware only for phosphate determination and after use, 

wash and keep filled with water until needed.  If this is done, acid treatment is required only 

occasionally. 

 

Reagents 
 

Phosphate Test 

PO4-1 – Sulphuric Acid ( ≥25% - <50%) 

PO4-2 – Non-Hazardous 
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Total Phosphate Test 

P-1K – Sodium nitrate ( ≥50% - ≤100%) 

P-2K – Sulphuric Acid (≥10% - <15%) 

P-3K – Non-Hazardous  

 

Calibration 
To check the photometric measurement system (test reagents, measurement 

device, handling) and the mode of working, Spectroquant® CombiCheck 10 can 

be used. Besides a standard solution with 0.80 mg/l PO4-P, the CombiCheck 10 also 

contains an addition solution for determining sample-dependent interferences 

(matrix effects). 

 

Sample Preparation 
Fecal samples are diluted by blending 1.8g -2g sample into 1L of distilled water, as described in detail 

below: 

Weigh out 1.8g – 2g faecal sample using an analytical balance and add to a blender with 100mL distilled 

water and blend. 

Add blended sample to a 1L volumetric flask and dilute to 1L using distilled water. 

Swirl flask until sample is completely dissolved. 

 

Filtration 

Filter paper dimensions: diameter = 47mm, pore size = 0.45 microns 

Filter the diluted solution using a Buchner funnel. 

Collect the filtrate for analysis. 

 

Procedure 
Note: Procedures according to Merck operational Manual for test kits (Phosphate 1.14848.0001 and 

total P 1.14543.0001) 

 

Ortho-Phosphate measurement: 

Pipette 5.0 ml pretreated (diluted and filtered) sample into a test tube. 

Reagent PO4-1 5 drops Add and mix.  

Reagent PO4-2 1 level blue microspoon,  add and shake vigorously until the reagent s completely 

dissolved  

Leave to stand for 5 min (reaction time), then fill the sample into the cell, and measure in the photometer. 

 

Total P measurement: 

Digestion for the determination of total phosphorus (Wear eye protection!): 

Pipette 5.0 ml pretreated sample into a reaction cell 

Add 1 dose Reagent P-1K, close the cell tightly, and mix. 

Heat the cell at 120 °C in the preheated thermoreactor for 30 min. 

Allow the closed cell to cool to room temperature in a test-tube rack. 

Do not cool with cold water! 

shake the tightly closed cell vigorously after cooling. 

Add 1 dose reagent P-2K, close the cell tightly, and mix. 

Add 1 dose reagent P-3K, close the cell tightly, and shake vigorously until the reagent is completely 

dissolved. 

Leave to stand for 5 min (reaction time), then measure the sample in the photometer. 

 

………………………………………………………………………………………………………… 
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Sample Analysis 

Note: Procedure according to Merck operational Manual for test kits (Phosphate 1.14848.0001 and total 

P 1.14543.0001) 

 

Ortho-Phosphate measurement: 

Pipette 8.0 mL distilled water into a test tube. 

Add 0.5 mL pretreated sample with a micro-pipette and mix. 

Add 0.5 mL Reagent PO4-1 with a micro-pipette and mix. 

Add 1 dose Reagent PO4-2 and shake vigorously until the reagent is completely dissolved. 

Leave to stand for 5min (reaction time), and then fill the sample into the cell (10-mm cuvette) and 

measure in the photometer. 

 

Total P measurement: 

Digestion for the determination of total phosphorus (Wear eye protection!): 

Pipette 5.0 mL pretreated sample into a reaction cell. 

Add 1 dose Reagent P-1K, close cell tightly, and mix. 

Heat the cell at 120℃ in the preheated thermoreactor for 30 min. 

Allow the closed cell to cool to room temperature in a test-tube rack. 

Do not cool with cold water! 

 

Shake the tightly closed cell vigorously after cooling. 

Add 1 dose Reagent P-2K, close the cell tightly, and mix. 

Add 1 dose Reagent P-3K, close the cell tightly, and shake vigorously until the reagent is completely 

dissolved. 

Leave to stand for 5 min (reaction time), then measure the sample in the photometer. 

Procedure (Using Standard Solution - Reagent R-1) 

 

Note: The error caused by the photometric measurement system and the mode of operation can be 

determined by means of the standard solution. This is used without dilution in place of the sample 

solution. 

 

Basic Procedure: Proceed according to the instructions given in the package insert of the respective 

test kit and in the manual of the photometer used (as described in the total P measurement procedure 

using UD samples). In this case, however, use undiluted reagent R-1 in place of the sample without 

adjusting the pH! 

Detailed Procedure: 

 

Total P measurement using a standard solution (reagent R-1): 

Digestion for the determination of total phosphorus (Wear eye protection!): 

Pipette 5.0 mL undiluted reagent R-1 into a reaction cell. 

Add 1 dose Reagent P-1K, close cell tightly, and mix. 

Heat the cell at 120℃ in the preheated thermoreactor for 30 min. 

Allow the closed cell to cool to room temperature in a test-tube rack. 

Do not cool with cold water! 

 

Shake the tightly closed cell vigorously after cooling. 

Add 1 dose Reagent P-2K, close the cell tightly, and mix. 

Add 1 dose Reagent P-3K, close the cell tightly, and shake vigorously until the reagent is completely 

dissolved. 

Leave to stand for 5 min (reaction time), then measure the standard sample in the photometer. 

 

Disposal of waste 
Dilute 10 ml into 1000ml. 

Slowly add NaCO3 until ph 6-8 is reached. 

Flush down the sink with excess water. 
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Calculations  

𝑊𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑔/𝑔)  =
𝐴

1000
×

𝑉

𝑀
 

𝐷𝑟𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑔/𝑔)  =
𝑊𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 𝐶𝑜𝑛𝑐. (𝑔/𝑔)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑖𝑑𝑠 (𝑔/𝑔)
 

Where: 

𝐴 − 𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑞𝑢𝑎𝑛𝑡 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

𝑉 − 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 (𝐿) 

𝑀 − 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑆𝑙𝑢𝑑𝑔𝑒 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑔) 
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Total Solids - 2540 

 

Introduction  

Solids refer to matter suspended or dissolved in water, wastewater and fecal sludge.  Solids may affect 

water or effluent quality adversely in a number of ways.  Solids analyses are important in the control of 

biological and physical wastewater treatment processes and for assessing compliance with regulatory 

agency wastewater effluent limitations. 

Total Solids is the term applied to material residue left in the vessel after evaporation of a sample and 

its subsequent drying in an oven at a defined temperature.  Total solids includes total suspended solids, 

the potion of solids retained by a filter and total dissolved solids, the portion that passes through the 

filter of 2.0um or smaller.  Fixed Solids, is the term applied to residue of total, suspended or dissolved 

solids after heating to dryness for a specified time at a specified temperature.  The weight loss on 

ignition is called volatile solids. 

 

Total Solids Dried at 103-105ºC 

1. Scope and Field of Application 

 

Total Solids are determined in a wide variety of liquid and semi-liquid materials.  These include portable 

waters, domestic and industrial waters, polluted waters and faecal sludge produced from treatment 

processes.  It is of particular importance for the efficient operation of a treatment plant. 

A known volume of well-mixed sample is evaporated to dryness in a porcelain crucible in a hot air oven 

at 105ºC, the solids remaining are cooled and weighed.  The residual material in the crucible is classified 

as total solids, and may consist of organic, inorganic, dissolved, suspended or volatile matter 

 

2. Interferences 

 Highly mineralized water with a significant concentration of calcium, magnesium, chloride and 

sulphate may be hygroscopic and require prolonged drying, proper desiccation and rapid 

weighing. 

 Exclude large, floating particles from the sample if it is determined that their inclusion is not 

desired in the final result.   

 Disperse visible floating oil and grease with a blender before withdrawing sample portion for 

analysis because excessive residue in the dish may form a water-trapping crust. 

 

3. Sampling  

 Mix the sample well to suspend solids uniformly. 

 Remove the test portion rapidly before any settling of solid matter occurs. 

 Use a measuring cylinder and not a pipette for sludge and wastewater samples. 

 Use a crucible for feces. 

 Use a volume or mass of sample to ensure a measurable residue- limit sample to no more than 

200mg residue 

 Suitable aliquots: Liquid samples – 100ml, Sludge -30ml, Faeces 10-20g 

 

4. Safety Precautions 

 . Always use safety goggles, gloves and laboratory coat while working in laboratory  

 Wear gloves suitable for withstanding high temperatures when removing crucibles from the oven. 

 After the analysis clean bottles and beakers with clear water keep it for drying 

 Dispose the used gloves after completion of analysis 

 Clean the hands using antiseptic soap  

 Disinfect hands after washing with soap 

 Avoid spillage and contact with skin.  In the latter case use copious washings with cold water and 

call for medical attention. 
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5. Apparatus 

 50ml capacity evaporating porcelain crucibles 

 Desiccator 

 Drying oven 

 Analytical Balance 

 

6.  Reagents 

 None 

 

7. Calibration 

 Check the temperature throughout the oven area by placing a calibrated thermometer on each 

shelf, after 30mins, check temperature at each level against oven setting. 

 Adjust oven setting if necessary. 

 If temperatures are uneven on the shelves, check insulation. 

 

8. Procedure 

Prepare Crucible 

 If volatile solids are to be measured ignite clean crucible at 550ºC for 1hr in the furnace.  If only 

total solids are to be measured, heat clean crucible to 103-105ºC for 1h.  Store and cool dish in a 

desiccator until needed.  Weigh immediately before use…….W1g 

 

Sample Analysis 

 Measure out appropriate volume (30ml) /minimum mass (10-20g) that will yield a residue between 

2.5 and 200mg of a mixed sample using correct volume measuring cylinder or analytical 

balance….Vml…Wg.  Transfer quantitatively to the weighed crucible, rinsing the cylinder with 

small volumes of distilled water to dislodge heavy particles.  Add washings to the crucible.   

 Place in hot oven at 103-105°C for 24hrs. 

 Dry sample for at least 1hr in an oven 103-105°C, to desiccator to balance temperature and 

weigh.  Repeat cycle of drying, cooling and weighing until a constant weight is obtained, or until 

weight change is less than 4% of previous weight or 0.5mg, whichever is less. 

Remove the next day and cool for 15 minutes and weigh…..W2g 

 

9. Calculation 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑚𝑔/𝑙) =  
(𝑊2 − 𝑊1)𝑔 × 100 000

𝑉𝑠𝑎𝑚𝑝𝑙𝑒 (𝑚𝑙)
 

 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑊𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑔/𝑔) =  
(𝑊2 − 𝑊1)𝑔

𝑊𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔)
 

 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (𝑔) = 𝑊𝑠𝑎𝑚𝑝𝑙𝑒(𝑔) − [(𝑊2 − 𝑊1)]𝑔 

 

 

Total Suspended Solids Dried at 103-105ºC 

 

1. Scope and Field of Application 

Suspended solids are useful determinants in the analysis of polluted, re-use and waste waters.  It is used 

to evaluate the strength of domestic/industrial waste waters and to determine the efficiency of treatment 

units, such as settling tanks, biological filters, and the activated sludge.  Use of glass fiber filter pads is 

preferred to crucibles because of the saving in filtration time and the only prior preparation necessary 

is drying in an oven for 30mins at 105ºC. 

A measured volume of well shaken is vacuum filtered through a dried pre-weighed 110mm  

diameter glass fiber filter. The filters and residue is dried to a constant weight at 103-105ºC.   

The increase in weight of the filter represents the total suspended solids. 
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1.   Interferences 

 

 Exclude isolated large floating particles. 

 Samples high in dissolved solids must be washed adequately. 

 Loss in mass of the rinsed glass fiber filters must be taken into the final calculation. 

 The larger the sample, the smaller the factor applied in the calculation, but avoid prolonged 

filtrations. 

 

3.  Sampling 
 

 Take the sample at a point of turbulence to ensure that it is truly representative. 

 Mix sample thoroughly and remove test portion rapidly before segregation occurs. 

 Use appropriate volume measuring cylinder and not pipettes. 

 

4. Safety Precautions  

 Exercise care when using glassware, vacuum pumps and ovens. 

 Good housekeeping and cleanliness are essential for obtaining accurate results. 

 

5.   Apparatus  

 

 Four- place Analytical balance 

 110mm diameter funnel and flask 

 Vacuum pump  

 

6.  Reagents 

 Nil 

  

7.  Calibration 

 The analytical balance and ovens are checked and serviced weekly. 

 

8.  Sample Preparation – Faecal Sludge 

 Weigh out between 1.8g and 2g of well mixed fecal sludge sample. 

 Place the weighed out sample into a blender with 250ml of distilled water. 

 Blend for 30 seconds. 

 Transfer the blended mixture into a volumetric flask and top up to 1L with distilled water. 

 Transfer the 1L solution to a plastic bottle and store in the cold room. 

 

9. Procedure 

 

Dry Filter Paper 

 Use 110mm glass fiber filter paper Whatman No 4(20-25um) for sludge. 

 Use 20ml sample on a 40mm, 0.45um glass fiber filter for waste water and urine.(change to a 1um 

pore size if the dried residue is more than 200mg. 

 Use a smaller pore size if the dried residue is lower than 2.5mg. 

 Mark the filter paper with a pen 

 Place papers on the stainless steel mess of appropriate size 

 Position on top shelf in oven at 105ºC for 30min . 

 If volatile solids are to be measured ignite at 550 ºC for 15min in a furnace. 

 Transfer to desiccator 

 Cool for 20 minutes before weighing 
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Weigh Filter Paper 

 Transfer filter paper rapidly to balance 

 Note mass(W1)grams, to fourth decimal place 

Prepare for Analysis 

 Place filter pare into a 110mm diameter funnel, with the marking on the lower side 

 Measure out appropriate volume  to yield between 2.5 and 200mg dried residue of well mixed 

sample 

 Place funnel into flask with side arm attached to a vacuum pump. 

 Apply pump 

 Wet paper with distilled water to seal edges of the paper to surface of the funnel 

 Pour sample onto the filter paper, keeping sample in the middle of the paper. 

 When filtration is complete. Remove paper by placing the end of a small thin spatula along the edge 

of the filter paper and lift slowly. 

 Remove the paper with a pair of tweezers, taking care not to tear the paper. 

 Fold paper twice to form a triangle enclosing sample residue. This seals the residue in the filter 

paper and protects it from contact with air. 

 

Dry and Weigh 

 Place triangles on a stainless steel mess 

 Place in oven at 105ºC for 2hrs 

 Remove from oven and place in desiccator 

 Cool to room temperature 

 Weigh after 20 mins, as rapidly as possible 

 Note mass (W2)grams 

 

11. Calculation 

 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑆𝑜𝑙𝑖𝑑𝑠 (𝑔/𝑚𝑙) =  
(𝑊2 − 𝑊1)

 𝑉𝑠𝑎𝑚𝑝𝑙𝑒(𝑚𝑙)
 

 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑊𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑔/𝑔) = 𝑇𝑆𝑆 (𝑔/𝑚𝑙)  × 𝐷𝐹 

 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝐷𝑟𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑔/𝑔) =  
𝑇𝑆𝑆𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑖𝑑𝑠 (𝑔/𝑔)
 

 

W1 = weight of filter paper before oven (105ºC) (g) 

W2 = weight of residue + filter paper after oven(105ºC) (g) 

DF = Dilution Factor 
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Fixed and Volatile Solids Ignited at 550ºC 
 

1.  Principle 

 

The residue from the above methods is ignited to constant weight at 550ºC. The remaining solids 

represent the fixed total, dissolved or suspended solids while the weight lost on ignition is the volatile 

solids.  The determination is useful in control of wastewater treatment plant operation because it offers 

a rough estimate of the amount of organic matter present in the solid fraction of wastewater, activated 

sludge and industrial wastes.  

 

2.  Interferences 

 

 Negative errors in the volatile solids may be produced by loss of volatile matter during the drying. 

2. Apparatus 

 

 Muffle Furnace 

 As above 

 

4. Procedure 
 

 Ignite residue from the total solids to constant weight in a muffle furnace at a temperature of 550ºC. 

 Have furnace up to temperature before inserting sample. 

 Usually 2 hr for VIP and sludge samples,15-20min for waste water (200mg residue) 

 Let the crucible cool partially in air until most of the heat has dissipated 

 Transfer to a desiccator for final cooling. Do no overload the desiccator 

 Weigh dish as soon as it has cooled to balance temperature. 

 

5.  Calculation 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑊𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑔/𝑔) =  
(𝐵 − 𝐶)

 𝑊𝑠𝑎𝑚𝑝𝑙𝑒(𝑔)
 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝐷𝑟𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑔/𝑔) =  
𝑉𝑆𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑖𝑑𝑠(𝑔/𝑔)
 

 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑊𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒(𝑔/𝑔) =  
(𝐶 − 𝐷)

 𝑊𝑠𝑎𝑚𝑝𝑙𝑒(𝑔)
 

 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝐷𝑟𝑦 𝑆𝑎𝑚𝑝𝑙𝑒(𝑔/𝑔) =  
𝐹𝑆𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑖𝑑𝑠(𝑔/𝑔)
 

 

 

B = weight of residue + crucible before ignition - 550ºC (g) 

C = weight of residue + crucible after ignition -550ºC (g) 

D = weight of crucible (g) 
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APPENDIX B MATLAB CODE USED TO SMOOTHEN RAW DATA 

The experimental curves produced had a noise which would make it difficult to generate rate curves. A 

Matlab code was generated to eliminate the noise within the data. The function of the code was to 

generate a smoother curve by using a cubic spline fit over a number adjacent data points 

clear 

 clc 

  

stepRatio = 0.08                       % Ratio "Step length / Total length", it has to be < 1 

                                                 % Adjustment parameter [0.01 - 0.1] 

data = load(['manip1']);           % manip should contain time and mass in that order(column vector) 

data=data.(['manip1']); 

t=data(:,1); 

M=data(:,2); 

degree=1;                              % degree of fitting polynomial 

n=int16((length(t)-1)*stepRatio);   % integral number of values for each step 

Mp=[];%empty vector before iterations 

tp=[];%empty vector before iterations 

       for i=n+1:length(t)-(n+1 

        ts=t(i-n:i+n);        

        Ms=M(i-n:i+n); %  

       [a,S,MU]=polyfit(ts,Ms,degree); %fitting polynomial of degree  

         tp(i)=ts(n+1);%definitive vector values 

        Mp(i)=polyval(a,tp(i),S,MU);%definitive vector values 

    end 

       % Smoothing first section of curve 

      ts=t(1:n); 

      Ms=M(1:n); 

      [a,S,MU]=polyfit(ts,Ms,degree); 

            for i=1:n % Iterations to build the first points from tp and Mp vectors 

                tp(i)=ts(i); 

                Mp(i)=polyval(a,tp(i),S,MU); 

            end 
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      %figure(1) 

      % xlabel('Time (min)') 

      % ylabel('Mass (g)') 

       % plot(t,X,'-b',ts,Xs,'*r',ts,polyval(a,ts,S,MU),'-g'); 

        %axis([ts(1) ts(n) min(Xs) max(Xs)]); 

    finaltable = [tp;Mp]' 

   subplot(1,2,1) 

    plot(tp,Mp)  

    title('change in mass') 

    xlabel('Time(min)') 

    ylabel('mass (g)') 

  

    % plotting of instantaneous rate curve 

  ii = 1: length(Mp)-1; 

    for in = ii 

        rate(in) = (Mp(in)-Mp(in+1))/5 ;  % change in mass per unit time 

    end 

     

    subplot(1,2,2) 

    plot(tp([ii]),rate,'r+') 

     title('Rate plot') 

     xlabel('Time(min)') 

    ylabel('rate ') 
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APPENDIX C  COMPARISON OF RESULTS  

 

Figure C. 1: Comparison between raw data and smoothened data of pellets at varying 

temperatures whilst at constant relative humidity, pellet diameter and air velocity 

 

 

Figure C. 2: Three drying experimental results at the same conditions of 60°C. 5% relative 

humidity, pellet diameter of 8 mm to evaluate the reproducibility of the raw data  
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APPENDIX D Formulation of an empirical drying model 

Analysis of the coefficients found for the Page model was done as it was the model that described the 

experimental data well of all the models investigated. The temperature variation of the k constant for 

the falt slab and cylindrical configuration was evaluated and represented in the figure below. The 

variation of the k constant was regressed to a power law of the form 

𝑘 = 𝐴𝑇𝑏 

Where A and b are constants, T is the temperature (°C) 

 

Figure D. 1 variation of the constant, k, of the Page model with temperature of both the flat slab 

and cylindrical configuration 

It was assumed that the constant A was a function of the sample thickness, of which results from 

changing pellet diameters were used.  The variation of the A constant with the pellet diameter was 

assumed to follow a power relationship of the form 

𝐴 = 𝐶𝑑𝑒 

Where C and e are constants, d is the pellet diameter (mm) 
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Figure D. 2 variation of the A constant with the pellet diameter obtained by regressing the k, 

constant of the Page model with temperature of cylindrical configuration  
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APPENDIX E Drying data  

Table E- 1 Drying data used to evaluate the dry rate at a temperature of 40°C, relative humidity 

of 5%, velocity of 0.6cm/s and pellet diameter of 8 mm 

Final mass (g) 3,20  Surface area (m2) 0,002262 

     

Time (min) Mass (g) Rate (g/min) Rate/ SA Moisture Ratio 

0 22,89 0,2486 27,473 1 

5 21,65 0,2486 27,473 0,936 

10 20,40 0,2486 27,473 0,873 

15 19,16 0,2486 27,473 0,810 

20 17,92 0,2486 27,473 0,747 

25 16,68 0,2486 27,473 0,684 

30 15,43 0,2309 25,519 0,621 

35 14,78 0,2149 23,755 0,588 

40 13,71 0,1901 21,014 0,533 

45 12,76 0,2072 22,901 0,485 

50 11,72 0,1805 19,953 0,432 

55 10,82 0,1715 18,951 0,386 

60 9,96 0,1679 18,553 0,343 

65 9,12 0,1459 16,122 0,300 

70 8,39 0,1456 16,092 0,263 

75 7,67 0,1193 13,189 0,226 

80 7,07 0,1195 13,204 0,193 

85 6,47 0,1061 11,730 0,165 

90 5,94 0,0899 9,932 0,138 

95 5,49 0,0751 8,297 0,116 

100 5,12 0,0804 8,886 0,097 

105 4,71 0,0515 5,688 0,076 

110 4,46 0,0459 5,069 0,063 

115 4,23 0,0508 5,615 0,051 

120 3,97 0,0303 3,345 0,039 

125 3,82 0,0263 2,903 0,031 

130 3,69 0,0103 1,135 0,024 

135 3,64 0,0075 0,825 0,022 

140 3,60 0,0073 0,801 0,020 

145 3,51 0,0069 0,762 0,015 

150 3,42 0,0062 0,691 0,010 

155 3,35 0,0054 0,597 0,007 

160 3,26 0,0049 0,545 0,002 

165 3,23 0,0047 0,516 0,001 

170 3,21 0,0045 0,501 0,000 

175 3,18 0,0042 0,465 -0,001 

180 3,23 0,0047 0,516 0,001 
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Table E- 2 Drying data used to evaluate the dry rate at a temperature of 60°C, relative humidity 

of 5%, velocity of 0.6cm/s and pellet diameter of 8 mm 

Final mass (g) 4,13  Surface Area (m2) 0,002262 

     

Time (min) Mass (g) Rate (g/min) Rate/ SA Moisture Ratio 

0 21,42 0,1804 19,9338 1,000 

5 20,52 0,1804 19,9338 0,948 

10 19,61 0,1804 19,9338 0,896 

15 18,71 0,1804 19,9338 0,844 

20 17,81 0,1804 19,9338 0,791 

25 16,91 0,1804 19,9338 0,739 

30 16,01 0,1629 18,0039 0,687 

35 15,90 0,1533 16,9471 0,681 

40 15,14 0,1487 16,4339 0,637 

45 14,45 0,1426 15,7563 0,597 

50 13,80 0,1367 15,1050 0,559 

55 13,11 0,1339 14,7955 0,520 

60 12,44 0,1229 13,5871 0,481 

65 11,83 0,1248 13,7934 0,445 

70 11,21 0,1292 14,2797 0,409 

75 10,56 0,1251 13,8229 0,372 

80 9,93 0,1104 12,2019 0,336 

85 9,38 0,1007 11,1261 0,304 

90 8,88 0,0996 11,0049 0,275 

95 8,42 0,0971 10,7282 0,248 

100 7,93 0,0960 10,6103 0,220 

105 7,45 0,0873 9,6525 0,192 

110 7,02 0,0748 8,2672 0,167 

115 6,64 0,0781 8,6356 0,146 

120 6,25 0,0695 7,6778 0,123 

125 5,91 0,0597 6,6020 0,103 

130 5,61 0,0523 5,7767 0,086 

135 5,35 0,0529 5,8504 0,070 

140 5,08 0,0355 3,9199 0,055 

145 4,90 0,0348 3,8462 0,045 

150 4,73 0,0269 2,9768 0,035 

155 4,59 0,0293 3,2420 0,027 

160 4,45 0,0197 2,1810 0,019 

165 4,35 0,0305 3,3747 0,013 

170 4,20 0,0103 1,1347 0,004 

175 4,15 0,0037 0,4126 0,001 

180 4,13 0,0077 0,8547 0,000 

185 4,09 0,0071 0,7810 -0,002 
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Table E- 3 Drying data used to evaluate the dry rate at a temperature of 80°C, relative humidity 

of 5%, velocity of 0.6cm/s and pellet diameter of 8 mm 

Final mass (g) 3,89  Surface area (m2) 0,002262 

     

Time (min) Mass (g) Rate (g/min) Rate/ SA Moisture Ratio 

0 23,15 0,2952 32,6268 1,000 

5 21,68 0,2952 32,6268 0,923 

10 20,20 0,2952 32,6268 0,847 

15 18,73 0,2952 32,6268 0,770 

20 16,53 0,2952 32,6268 0,656 

25 14,94 0,2863 31,6431 0,573 

30 13,36 0,2961 32,7262 0,492 

35 11,78 0,2882 31,8555 0,410 

40 10,34 0,2596 28,6872 0,335 

45 9,05 0,2356 26,0346 0,268 

50 7,87 0,1856 20,5084 0,206 

55 6,94 0,1531 16,9225 0,158 

60 6,17 0,1127 12,4524 0,119 

65 5,61 0,0978 10,8068 0,089 

70 5,12 0,0578 6,3858 0,064 

75 4,83 0,0440 4,8631 0,049 

80 4,61 0,0253 2,7999 0,038 

85 4,49 0,0200 2,2105 0,031 

90 4,39 0,0153 1,6947 0,026 

95 4,31 0,0218 2,4070 0,022 

100 4,20 0,0089 0,9824 0,016 

105 4,16 0,0258 2,8491 0,014 

110 4,03 0,0093 1,0316 0,007 

115 3,98 0,0231 2,5543 0,005 

120 3,87 0,0089 0,9824 -0,001 
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Figure E- 1 Evaluation of the moisture content of the raw sludge and the dried pellets 

 

Table E- 4: Calorific value measurements from the Bomb Calorimeter 

Sample ID mass (g) Gross heat (MJ/Kg) EE value average heat standard deviation 

40T-0.1F-5RH 0,508 12,45 234   

40T-0.1F-5RH 0,507 12,22 2345 12,33 0,117 

40T-0.1F-5RH 0,5047 12,32 2345   

      

60T-0.1F-5RH 0,508 12,33 2345   

60T-0.1F-5RH 0,5091 12,70 2345 12,49 0,192 

60T-0.1F-5RH 0,5078 12,44 2345   

      

80T-0.1F-5RH 0,5053 12,87 2345   

80T-0.1F-5RH 0,5063 12,39 2345 12,67 0,2445 

80T-0.1F-5RH 0,5068 12,73 2345   

      

60T-0.1F-15RH 0,5077 12,15 2345   

60T-0.1F-15RH 0,5059 12,15 2345 12,15 0,0043 

60T-0.1F-15RH 0,5014 12,14 2345   

      

60T-0.1F-25RH 0,5024 11,64 2345   

60T-0.1F-25RH 0,5044 11,85 2345 11,74 0,103 

60T-0.1F-25RH 0,5048 11,72 2345   
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