

Citywide Sanitation Planning Insights from India, Bangladesh

B.R. Balachandran

Consultant, BORDA & CDD Society

Contents

- Background
- Challenges for citywide sanitation planning
 - Unmanaged urban growth
 - Unrealistic approach of decision makers
 - Capacity limitations of urban local bodies
- A viable approach
 - Correlating sanitation approach to urban development process
 - Developing an ecosystem of sanitation services
 - Program approach rather than project approach

Background

- CDD Society, Bangalore created to promote sustainable approaches to sanitation and wastewater management
- DEWATS streamlining and mainstreaming of decentralized wastewater treatment
- Experiments in scaling up of the DEWATS approach to area-wide and citywide solutions
- Focus on fecal sludge management
- Bangladesh project

Experiments in scaling up

 Pune – DEWATS based solution for treating wastewater along the catchment of a stream

Main sewage / waste water feeder pipe from network


Residential Zone

Main sewage / waste water feeder pipe from network

Residential Zone

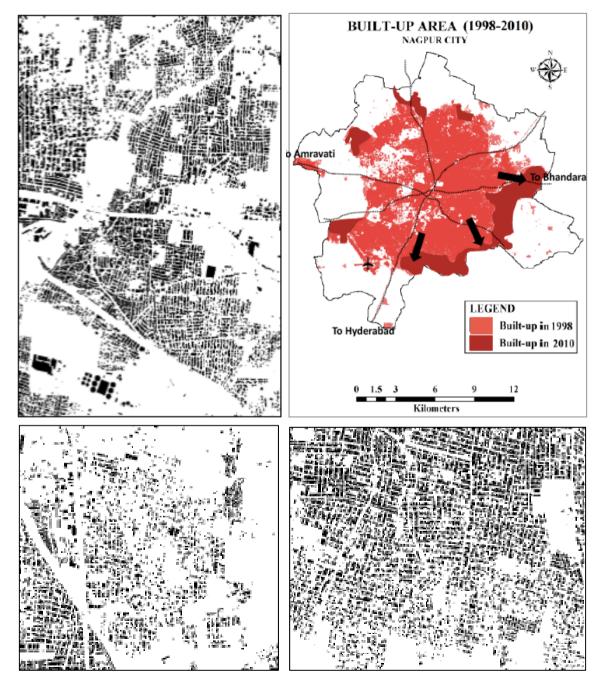
Residential Zone

 Kolhapur – citywide Master Plan for decentralized wastewater management

Mainstreaming of citywide sanitation planning

- National Urban Sanitation Policy 2008
- City Sanitation Plan as the preeminent planning tool
- CDD-Alchemy-CEPT undertake City Sanitation Plans for Raipur, Simla, Varanasi funded by GIZ

Grand plans, but...

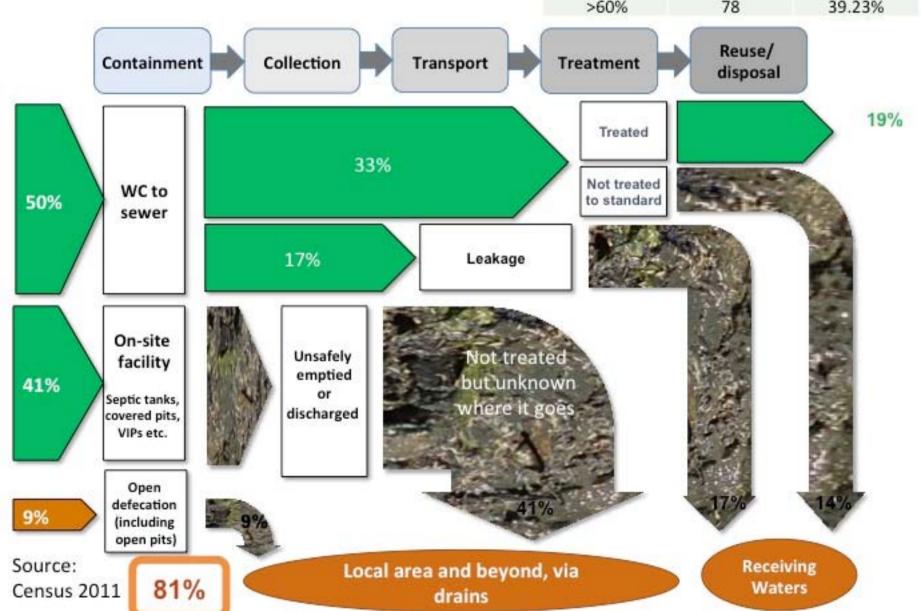

- Consultant driven planning
- Decision makers continue to favor big ticket sewerage projects
- No significant change on the ground

Realization of the need to focus on incremental improvement

Challenges for citywide sanitation planning

Unmanaged urban growth

- Cities expanding rapidly
- With few exceptions, almost all urban expansion is unplanned
- 50 80% of housing especially for low income groups – is informal/ unauthorized/ illegal
- Sanitation is low on the priority list – and usually ends with toilets



Unrealistic approaches

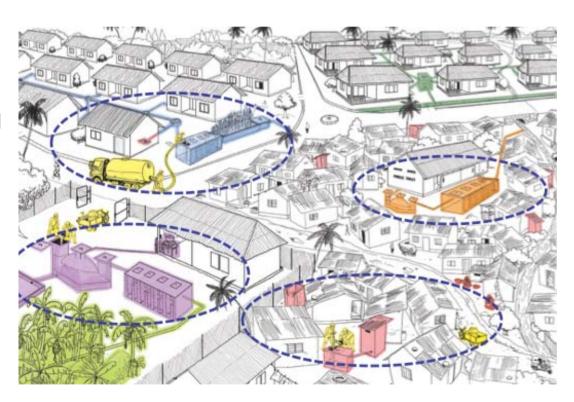
- Decision makers prefer proposals for citywide sewer networks and centralised sewage treatment plants
- However, often, the necessary preconditions don't exist
 - no street network
 - no willingness to pay
 - no resources to run the treatment plants
- Many cities claim high sewerage "coverage" (even 90%)
 - In reality half the sewage may be going untreated into natural water bodies.
 - Often, streets have sewer lines, but people may not connect
 - Lots of houses are not built on such streets

Urban India

Sewer coverage	No of Cities	% of population
<10 %	191	16.45%
10 - 30%	158	20.10%
30 - 60%	75	24.22%
>60%	78	39.23%

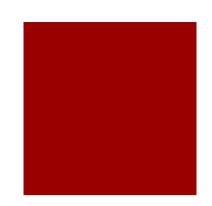
Onsite, out of sight, out of mind

- Pits and septic tanks predominant means of fecal containment
- Not acknowledged as a reality that will continue for years to come.
- No focus on services such as regular desludging.
 - Pits and septic tanks don't function well
 - Also makes it difficult to propagate the next level of improved sanitation (such as DEWATS).


Capacity limitations of urban bodies

- Donors, lenders, etc. promote ownership of projects by the city
 - Limited success most municipal bodies still work on government grants and are controlled by higher levels of government.
- Citywide sanitation planning presumes that cities have a culture of "planning and implementation".
 - Unfortunately most don't. They are used to implementing 'programs' of higher levels of government.

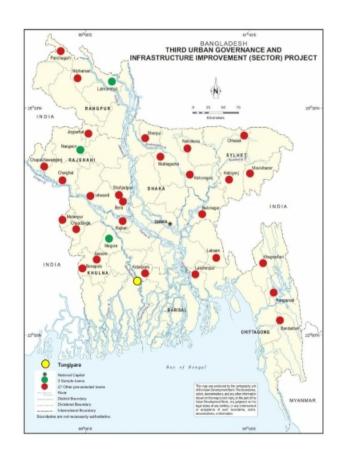
Viable approaches for citywide sanitation planning


Correlate sanitation approach to urban development process

- Two pronged strategy:
 - Urban expansion with sanitation systems
 - Cover backlog in developed areas
- Urban expansion:
 - Contiguous expansion extend existing system
 - Scattered peripheral growthdecentralized approach
- Backlog:
 - Site specific solutions

Develop an ecosystem of sanitation services

- Sanitation service ecosystem:
 - Production of prefab units, components, etc.
 - Services for sludge evacuation and transportation
 - Faecal sludge treatment plants and their O&M
 - Marketing network for reuse
- Service providers
 - Municipal
 - Private
- Soft components
 - Awareness campaign
 - Capacity building

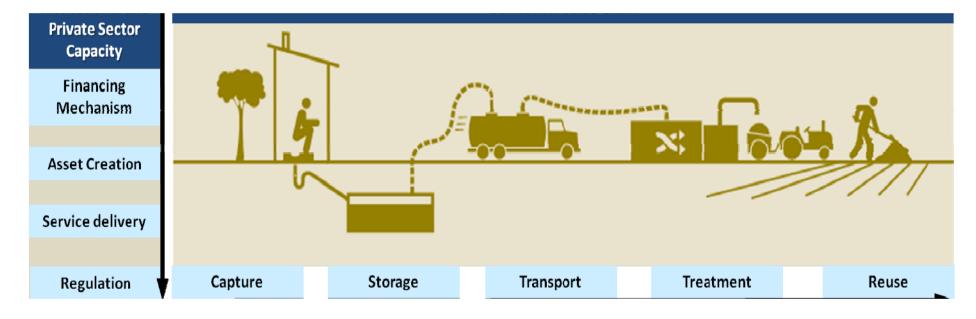

Program approach rather than project approach

- Awareness campaigns to build a critical mass of public opinion in favor of good sanitation practices
- Program for capacity building in municipalities
- Program for private sector vendor development
 - manufacture of prefab components
 - design and construction
 - sanitation service providers
- Program for building and operating faecal sludge treatment plants
- Program for reuse of treated sludge and effluent

Sanitation Action Plan for 31 towns in Bangladesh

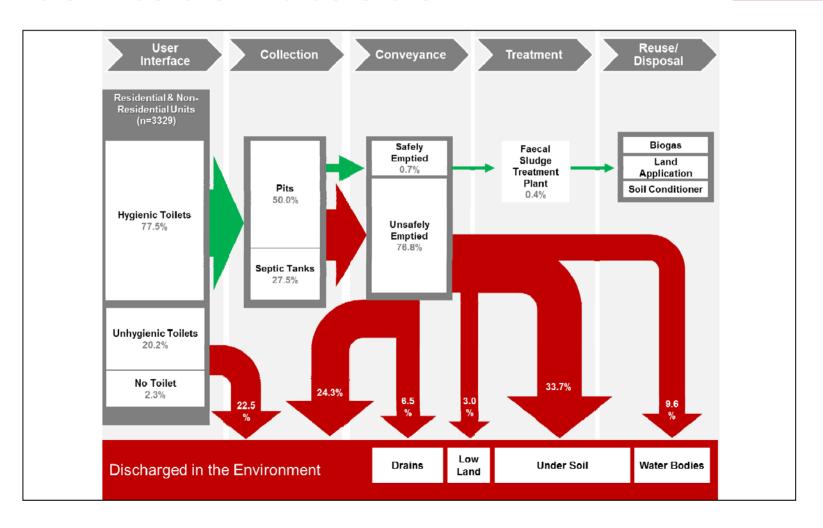
Introduction

- Preparing Sanitation Action Plans for 31 Pourashavas
- Funded through UGIIP-3 Program by the Asian Development Bank
- Duration: 10 Months
- Purpose: Preparation of Sustainable sanitation action plans using an incremental approach with preference for decentralized solutions



- Analyze existing sanitation situation in the Pourashava
 - Demand for Sanitation Solutions
 - Gap between Demand and Supply (level of service existing)
- Propose sanitation solutions to facilitate improved access to safe sanitation
 - Safe disposal of fecal sludge and wastewater
 - Possible reuse
- 3. Prepare Sanitation Action & Investment Plans

Timeline **Project** Feb-March Inception Sanitation **Demand** Follow-up **Existing** Action & Supply **Strategy** Situation support to Formulation Gap **Investment Assessment** PMO **Analysis Planning** Interim **F**inal submission submission March to June July to September Oct to Dec


- Completed stages of project
- Ongoing stage of Project
- Next stages of Project

Structured approach

The approach adopted is pragmatic, demand responsive and inclusive rather than need or supply driven.

Sanitation situation

Risk to health & environment

- Many of the toilets are unhygeinic
- Almost all the waste from the toilet goes untreated into natural water bodies
- High risk to health and environment

Program approach

Catalogue of Solutions

- Solutions for each segment of the value chain
- Technical briefs for each solution
- Recommended solutions for each town in its action plan
- Action plans as working documents


Program Design

- Awareness campaign
- Capacity building
- Sustainable operating models
- Investment planning
- Handholding
- Development of sanitation services ecosystem

Excerpts from Catalogue of Solutions

Collection/Emptying

Desludging/Emptying System – Semi Mechanized

Gulper System

Technical Specification/features

Operating principle – gulper works on the same concept as water hand pump. Bottom of the pipe is lowered into the pit /tank. The sludge is pumped up and discharged through the discharge spout

Technical and general description

- Specially designed for removal of sludge from pits
- Operating depth = 2-3 meters
- Weight = 8 to 10 kgs, Size = Length: 2 meters; Dia: 15 to 20 cm
- Pumping rate = 30 litres per minute
- No. of persons required for operations = min. 2 persons

Minimum Area Requirement for operation (in sqmt) = 1 to 2 sqmt

Applicability

- Applicable for settlement area with no accessibility for fully mechanized system
- Suitable for emptying small pits

Capital and O&M Cost (in BDT)

Capital Cost = 30000-35000 BDT

Desludging/Emptying System – Fully Mechanized

Dung beetle

Technical Specification/features

Operating principle – works on the concept of compression of air to create vacuum in the tank. Vacuum system with smaller quantity of sludge collection and storage

Technical and general description

- Operating depth = 2-3 meters
- Weight = 1100 kgs Size = 3.9 m x 1.4 m x 2.1 m (approx)
- Tank capacity = 1000 litres Vacuum pump capacity = 2700 litres/minute
- Type of energy = fuel (diesel)
- Persons required for operations = min. 2 persons

Minimum width Requirement for operation (in sqmt): 10 to 15 sqmt (Approximately)

Applicability

- Applicable for settlement area with limited access (road width in the range of 2-3 meters)
- Suitable for flat terrain
- Suitable for desludging volume of 0.5-2.0 cu.m per pit/trip

Capital Cost (in BDT)

Capital Cost = 7,00,000 BDT

Desludging/Emptying System – Fully Mechanized

Vacuum Tank

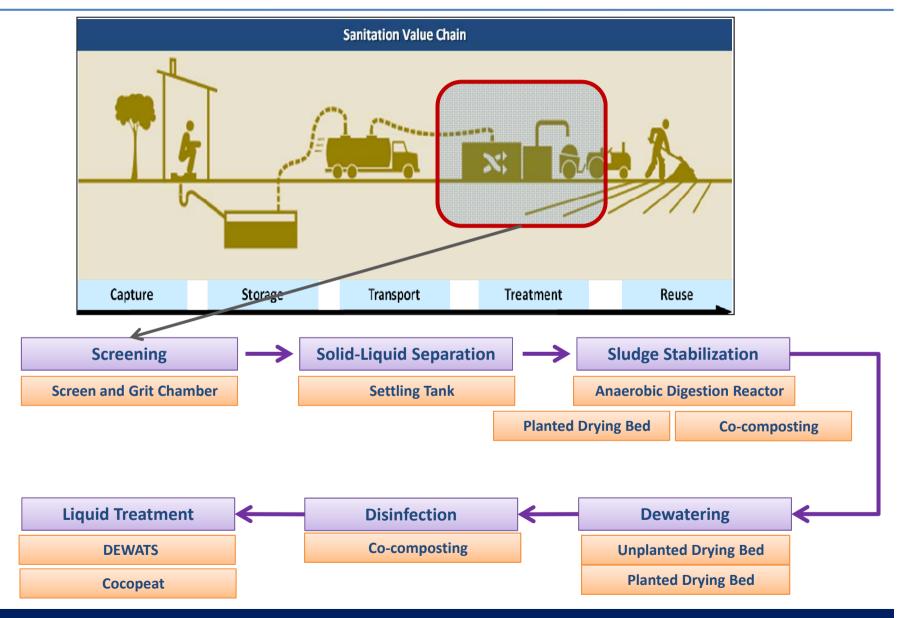
Technical Specification/features

Operating principle – works on the concept of compression of air to create vacuum in the tank. Vacuum system with medium to larger quantity of collection and storage of sludge.

Technical and general description

- Operating depth = upto 5 meters
- Weight = 900 kgs, Size = Length 20 ft; Width 7.4 ft
- Vacuum pump capacity = 4000 litres per minute
- Type of energy = fuel/electricity
- Persons required for operations = min. 2 persons

Applicability


- Applicable for settlement area with access (road width more than 3 meters)
- Suitable for desludging pits and septic tanks
- Access to remote areas through long hose pipes possible

Capital and O&M Cost (in BDT)

Capital Cost = 15,00,000 to 20,00,000 BDT

Treatment Approach

Treatment and Disposal system – Solid-Liquid separation

Settling tank

Technical Specification/features

Operating principle – Settling tank is a pre-treatment devise which ensures maximum settling (gravity settling or forced settling through addition of lime) of solid particles present in the faecal sludge waste for fixed duration of time.

Technical and general description

- The retention time proposed in the settling tank for 2 to 3 hours
- The solids collected at the bottom is discharged into the sludge treatment and dewatering unit where as the liquid (free water) is discharged in the wastewater treatment facility
- It can also act like equalisation tank to ensure uniform discharge of sludge into the subsequent module

Area Requirement: 3 sqmt

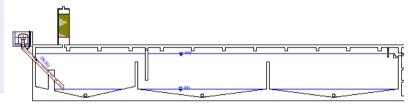
Capital Cost (in BDT)

Capital Cost = 10000 to 15000 per Cum

Treatment and Disposal system – Sludge stabilization

Anaerobic Digestion Reactor

Technical Specification/features


Operating principle – This treatment unit works on the principle of anaerobic digestion where the organic matter is converted more stable organic components.

Technical and general description

- This process ensure effective sludge digestion and stabilization ((in sewage disposal)
- The solid constituents present in the sludge that precipitate during treatment and are removed for subsequent purification or dewatering (filtration)
- The SRT is maintained for 12-15 days

Area Requirement (in sqmt): 12-15 sqmt/cu.m

Capital Cost (in BDT)

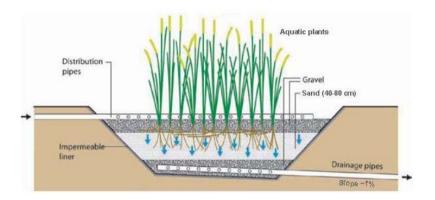
Capital Cost = 15000 to 25000 per Cum

Treatment and Disposal system – Sludge stabilization

Planted Drying Beds

Technical Specification/features

Operating principle – PDBs are loaded with layers of sludge that are subsequently dewatered and stabilized through multiple physical and biological mechanisms


Technical and general description

- The PDB is loaded with sludge of not more than 20cm per loading with maximum sludge depth of 1.5mtr before desludging. Sludge retention time – 2-3 years depending on sludge loading rate TS
- The filtrate is estimated in the range of 50-70% and evapo-transpiration 30-50% of the total volume
- Emergent microphytes Reeds and Cattails mostly used
- Permeable bed with graded filter media is used for a depth of 60-75cm with sand layer on top

Area Requirement (in sqmt): 10 to 70 m²/m³/day

Applicability

Applicable where the ULB can allocate large area for construction

Capital Cost (in BDT)

Capital Cost = 800 to 2000 BDT per sq. ft

- Correlate sanitation approach to urban development process
- Plan for incremental improvement
- Facilitate the creation of an ecosystem of sanitation services

Thank You