Assessing the bio-methane potential (BMP) and concomitant pathogen removal of UDDT faeces with(out) additional organic substrates

Joy Riungu, Mariska Ronteltap, Jules van Lier

Problem definition

Biochemical methane potential (BMP) test

Objectives....

- Single substrate digestion of
 - F = UDDT faeces,
 - W = whey
 - MFW = food waste
 - MVW = vegetable waste
- Co-digestion of F and MVW
- Pathogen removal in digestion of organic waste
- VFA effect on pH and Ecoli

Waste substrates...

- **≻Waste collection**
 - UDDT feaces
 - Organic waste substrates
 - Inoculum

Test procedure

- 100 ml serum bottles
- I:S ratio=2:1
- Nutrients
- Add water to working volume of 80 ml
- pH = 7
- Add buffer

- Close serum bottle
- Bubble argon gas
- Incubate at 35 degrees
- Shake manually every 4hrs
- Blank sample

Conducting tests:

- Each test conducted in three batches
- Each batch done in triplicates

Measurements

Biogas measurement, by measuring ΔP

Obeys eq. of state of ideal gas

$$V_{\text{Biogas}=\frac{\Delta P.V_h V_{mol}}{R.T}}$$

Measurement CO2 content

Ecoli enumeration

VFA measurement setup

Other parameters

- VS, TS (APHA, 1998)
- pH meter calibrated with soln's at pH4, 7

Results Characterization of material used batch experiments

Substrate type	% TS (w/w)	%VS (w/w)	SMA (g COD- CH4/gVSS/ day)	pН	% VS/TS
Inoculum (I)	14.0±0.4%	10.7±0.4%	0.13±0.01	7.5±0.2	76
F	19.2±0.8%	17.1±1.0%		7.0±0.03	89
MFW	19.7±1.2%	15.9±3.6%		4.5±0.1	80
MVW	8.5±0.8%	7.5±0.7%		6.7±0.1	88
W	7.2±1.0%	5.4±0.6%		4.5±0.02	75

Single substrate digestion

Figure 1: Cumulative methane produced on **vegetable waste**

Figure 2: Cumulative methane produced on **whey**

Cont'd..

Figure 3: Cumulative methane produced on **UDDT faeces**

Figure 4: Cumulative methane produced on **Food waste**

Methane production (ml CH₄/g VS added)

Methane %

•	MVW=	436±16
	IVIV V V —	

Co-digestion

Comparison between mix ratios

Figure 5: Cumulative average methane produced in co-digestion MVW &F

VFA and its effect and E. Coli

Figure 5: Changes in VFA and pH against time

Cont'd...

Whey

- 1st day-VFA rise:
 - 8.5 45.5 meq/l.
- 1st day-pH drop from:
 - 7 5.07
- 2nd -10 day-No gas prodn
- Ecoli- Undetectabe level day 10. K=1.32

Faeces

- 1st day-VFA rise: 6.2 7
- 1st day-pH drop: 7 6.8
- Steady rise in gas prod
- Ecoli-Undetectable level in 30 days, K=0.5

Conclusion

- High VFA –precursor to methane production (whey)
- VFA build up in digester- improves sanitization effect
- In co-digestion, the more the MVW fraction, the more the CH4 produced.
- Possible to (re-)start methane production after inhibition by low pH.
- 30 days required for E. Coli removal in UDDT faeces at 35 degrees.

Thank you!