Assessment of Decomposition of Feacal Sludge in Single Vault Composting Toilet

(Decomposition of Feacal Materials and Pathogens Die-off in Single Pit Latrines - the Laboratory Results)

Viet-Anh Nguyen*, Hong-Anh Do*, Jeroen H. J. Ensink**

*Institute of Environmental and Science Engineering (IESE), University of Civil Engineering (HUCE).

**London School of Hygiene and Tropical Medicine (LSHTM), UK

Introduction

- Composting latrines are commonly used in rural areas in Vietnam,
- MOH recommended that fecal sludge in dry pit latrine need to be stored in the pit at least for 6 months,
- For the safely reuse, the 2006 WHO guidelines indicate that human feces should be stored for 1 to 2 years.
- 66% of respondents stored feces under 6 months and 33% of households using fresh feces directly.

Aims of the study

- To verify the user manual of the MOH,
- To assess the decomposition process and pathogens die-off happening in single dry pit latrines considering influencing storage time factor,
- To determine the need and improved decomposition process taking place in pit latrine.
- To verify the role of bio-additives in decomposition process

Materials and Methods

- 5 kg of material from the upper layer.
- 5 kg of material from the bottom layer and packed in separate bags.
- In Laboratory: 6 liters of a bag with bottom layer material is fed to the cylinder, followed by 6 liters of upper layer material from the same pit.

Materials and Methods

- Materials from 10 pits are mixed up by mechanical mixer for 20 minutes.
- Well mixed material is fed into 5 cylinders per 10 liters.
- 5 other cylinders are fed by 10 liters of the same well mixed material and bioadditives.

Bio-additive characteristics

Microbial community:

- Lactobacillus for reducing of odor
- Actino-bacteria for decomposition of protein and cellulose
- Active in the high pH condition

Materials and Methods (cont.)

Physical parameters:

- Height of compost pile
- Water contenr/TS
- Volatile solids

Biochemistry analysis:

- NH4-N
- PO4-P
- T- N
- CODtot/CODsol)

Helminth egg and Pathogen

- E.coli
- Helminth ova

Results and Discussions

- Height change in urine separation toilet samples is less than in nonseparation toilet samples,
- The volume reduction of mixed sample with bio-additives was more than sample without bio-additives,
- VS/TS decreases were observed with 50% of reduction after 9 months
- The volumes of mixed cylinders decrease around 10%

Results and Discussions

- NH₄-N value has reduced significantly (more than 90%),
- There was no change of PO₄-P over the decomposition period,
- Helminthes eggs and pathogens were found in both types of samples after 9 months storage,
- Decrease of helminthes eggs in sample with bio-additive was more than in sample without bio-additive.

Conclusions and Recommendations

- Limited decomposition in passive treatment (no mixing, in-situ, anaerobic condition),
- Unpleasant environment (too much lime and ash added) contributes to slow decomposition process due to poor microbial community.
- Nitrogen reduction is very high (due to high pH value).

Conclusions and Recommendations

- Pathogen die-off in cylinders took place slowly, even after 9 months of storage. Standard set by MOH for safe reuse has not been met
- For improvement of decomposition process of excreta: more active interventions, in-situ or outside of the pit, are needed.
- Examples:
 - Giving aerobic conditions to the composting process
 - Using suitable bio-additives
 - Having further treatment out side of the pit
 - Using other adding materials instead of traditional ash and lime

Thanks for your attention

Hong - Anh Do (MSc, PhD stud.)

Institute of Environmental Science and Engineering (IESE), Hanoi University of Civil Engineering (HUCE)

E.mail: honganh dhxd@yahoo.com, anhdh@nuce.edu.vn

