

Faecal Sludge characterization and modeling co-treatment with Municipal Wastewater

B. Dangol*,**, C.M. Hooijmans**, C.M. Lopez-Vazquez**,
M. Ronteltap**, D. Brdjanovic**

*Environment and Public Health Organization (ENPHO), Nepal

**UNESCO-IHE, The Netherlands

Disclaimer

This research is funded by **The Bill & Melinda Gates Foundation** under the framework of **Sanitation for the Urban Poor project** (Stimulating Local Innovation on Sanitation for the Urban Poor in Sub-Saharan Africa and South-East Asia).

This research has been published in chapter 9 of "FSM: Systems Approach for Implementation and Operation" book, IWA publishing 2014.

Managemer

FSM practice

- Proper planning of FSM often lacks;
- FS disposed of mostly untreated and uncontrolled;
- The major challenges on FSM are:

Emptying;

Transporting;

Storage or treatment;

Safe disposal or re-use.

Sometimes discharging of FS in municipal wastewater treatment plant.

Research Questions & objective

- Is it possible to co-treat FS in an activated sludge plant?
- How much FS can be added before deterioration occurs?
- What are the effects on aeration capacity, effluent concentration, settler?

To evaluate and propose key considerations for FS cotreatment with municipal wastewater in an activated sludge wastewater treatment plant.

Methodology

 Mathematical modelling of the effects of discharge of FS under steady state and dynamic conditions;

 Fractionation of the organics and nitrogenous compounds in terms of their biodegradability;

 The biodegradability of FS depends to a large extent on the storage duration in containment (Fresh vs. Digested FS).

Inventory of literature data on public toilet (fresh) and septic tank (digested) sludge

Parameter	Public Toilet	Septic Tank
Total solids (mg/L)	30,000-52,500	12,000-35,000
T∀S (%TS)	65-68%	50-73%
COD (mg/L)	10,000-250,000	3,000-90,000
BOD_5 (mg/L)	7,600	840-30,000
TN (mg N/L)	-	190-1,500
TKN (mg/L)	3,400	1,000
NH ₄ -N (mg/L)	2,000-5,000	150-1,200
Total P (mg P/L)	450	40-300

Ca	tegory	High strength		Medium strength		Low strength	
		Total COD	TN	Total COD	TN	Total COD	TN
\ '		(mg COD/L)	(mg N/L)	(mg COD/L)	(mg N/L)	(mg COD/L)	(mg N/L)
Dig	gested faecal sludge	90,000	1,500	45,000	400	3,000	200
Fr	esh faecal sludge	250,000	5,000	65,000	3,400	10,000	2,000

Faecal sludge fractionation

Fraction	CO	D	N	
	Digested FS	Fresh FS	Digested FS	Fresh FS
Soluble biodegradable /ammonia	0.12	0.15	0.20	0.47
Soluble unbiodegradable	0.09	0.03	0.75	0.52
Particulate biodegradable	0.31	0.69	-	-
Particulate unbiodegradable	0.47	0.13	0.05	0.01

Biodegradable COD fraction Digested FS:

0.12 + 0.31 = 0.43

Biodegradable COD fraction Fresh FS:

0.15 + 0.69 = 0.84

Design and operational conditions of the activated sludge plant

Parameters	Value	Influent	Value
Flowrate (m ³ /d)	20,000	Total COD (mg COD/L)	750
Temp.	20 ∘C	TN (mg N/L)	60
SRT (days)	10	TP (mg P/L)	15
Reactor TSS (mg TSS/L)	4500	TSS (mg TSS/L)	400

Amount of faecal sludge added to the plant

Assessment criteria (Key Performance Indicators)

- Effluent Standards (*Urban Waste-Water Treatment Directive* (91/271/EEC)):
 - TCOD = 125 mg/L
 - TN = 15 mg/L
 - TSS = 35 mg/L
- Reactor TSS concentration ≤ 6,000 mg/L;

Aeration capacity and costs.

Steady state simulations results (Effluent TCOD)

limit =125 mg/l

Steady state simulation results (Effluent TN)

limit = 15 mg/L

Steady state simulation results: (Effluent TSS)

limit = 35 mg/L

Steady state simulation results: (TSS in aeration tank)

limit \leq 6 kg TSS/m³

D-IHE

☐ Creating Eco Societies Institute for Water Education

Maximum volume of FS that can be discharged

Scenarios	% FS for effluent standard is met		% FS selected	% FS when TSS in aerobic tank	Volume of sludge (m³)	# Tanker loads/d	
	Total	Total N		is < 6kg TSS/L		5 m ³	8 m ³
	COD						
Digested Sludge							
Low Strength	10%	3.75%	3.75%	3.75%	750	150	94
Medium Strength	1%	1.5%	1%	0.375%	75	15	9
High Strength	0.5%	0.625%	0.5%	0.25%	50	10	6
Fresh Sludge							
Low Strength	10%	0.375%	0.375%	0.375%	75	15	9
Medium Strength	1.5%	0.25%	0.25%	0.25%	50	10	6
High Strength	0.375%	0.125%	0.125%	0.125%	25	5	3

Increase in aeration requirements

Increase in aeration cost

		Total aeration cost (€/year) @ € 0.10/kWH		Additional aeration cost (€/year)				
		High Aer.	Low Aer.					
		Efficiency	Efficiency	High Aer.	Low Aer.			
Scenarios	FS (%)	(2.3)	(0.6)	Efficiency	Efficiency			
Without FS	0%	118,968	456,046	-	-			
Digested Sludge	Digested Sludge							
Low Strength	3.75%	123,721	474,266	4,753 (4%)	18,220 (4%)			
Medium Strength	0.375%	130,094	498,697	11,126 (9.5%)	42,651 (9.5%)			
High Strength	0.25%	134,550	515,812	15,591 (13%)	59,766 (13%)			
Fresh Sludge								
Low Strength	0.375%	126,062	483,237	7,093 (6%)	27,192 (6%)			
Medium Strength	0.25%	137,332	526,440	18,364 (15.5%)	70,394 (15.5%)			
High Strength	0.125%	149,178	571,852	30,210 (25.5%)	115,806 (25.5%)			

Dynamic simulation results

• Average discharge of faecal sludge = 127.5 m³/d (0.68%)

Effluent COD and TN High-strength Digested FS

Effluent COD and TN Low-strength Digested FS

Effluent COD and N Low-strength Fresh FS

Attempts to improve effluent quality

- Discharge of FS during the night;
- Combined discharge of FS and influent wastewater in flow equalization tank;
- Discharge of even lower volumes of FS in the plant;

No significant changes.

Conclusion: Max. volume of FS that can be discharged

Type of faecal sludge	Max. volume % m³/d		No. of tanker loads per day				
			5 m ³	8 m ³			
Digested faecal sludge							
Low-strength	0.638	128	26	16			
Medium-strength	0.500	100	20	13			
High-strength	0.250	51	10	6			
Fresh faecal sludge							
Low-strength	0.125	25	5	3			
Medium-strength	0.025	5	1	1			
High-strength	0.025	5	1	1			

General Conclusion

- High increase in effluent COD, N and TSS conc. (low-strength FS has lower impacts);
- Increase in aeration requirement;
- Increase in TSS in aeration tank;
- No significant improvement in effluent quality when discharged FS during the night and by adding flow-equalization tank;
- No feasible approach.

Acknowledgements

- UNESCO-IHE;
- The Bill and Melinda Gates Foundation;
- ENPHO;
- And many more......

Thank you very much!!!

Considerations

- Real case study;
- Pathogens removal;
- Resource recovery;
- Energy consumption.

