

Utilization of a single-stage vertical flow constructed wetland to treat raw domestic sewage in a developing country

E. Manjate, L. C. O. Lana, D. C. Moraes, G. R. Vasconcelos, G. R. M. Maciel, M. von Sperling

15 October 2013

3rd IWA Development Congress & Exhibition, Nairobi

1. Problem description

- ✓ Lack of infrastructure to cater for sanitation needs in developing countries
- ✓ Unsustainable sewerage systems
- ✓ Stabilization ponds

Truck discharges content of septic tanks from household's to stabilization ponds in Maputo.

2. Vertical Flow Constructed Wetlands- Franch System

- Operational simplicity
- Treatment of raw domestic sewage
- Potential for nitrification
- Low costs
 - construction
 - maintenance
 - Operation
- Warm and tropical regions
 - 1° Stage
- Good efficiency in the removal of contaminants.

(Molle et al., 2005)

2. Vertical Flow Constructed Wetlands- Franch System

The study aimed at the reduction of 1/3 land requirements:

- Phase 1: 3 units (conventional 1st stage of the French system)
- Phase 2: only 2 units in the first stage

Vertical flow constructed wetlands treating only sewage (French system)

First Phase: From January-October, 2012

3 2 3-Planted unit 1-Planted unit 2-Unplanted unit Day 1 Day 5 Day 3 1- Feed (batch) 1- Rest 1- Rest 2- Rest 2- Rest 2- Feed 3 -Rest 3 -Feed

3 - Rest

Vertical flow constructed wetlands treating only sewage (French system)

Second Phase: From February, 2013

3

3-Planted unit

2- Feed (batch)

- 2- Seven days feeding.
- 3- Seven days resting

2

2-Unplanted unit

- 3- Feed (batch)
- 3- Seven days feeding
- 2- Seven days resting

Investigations were conducted at the Centre for Research and Training in Sanitation (CePTS) UFMG/COPASA, in Belo Horizonte, Brazil.

WWTP UFMG/COPASA

Vertical Flow constructed wetland units (CePTS UFMG/Copasa)

Sample collection Inflow Monitoring

Laboratory Equipment for Physical Parameters

Parameters
Determination in the laboratory at UFMG

Operational parameters of vertical constructed wetland

Parameters	Phase 1	Phase 2	
Number of units	3	2	
Area of each filter	29.1 m ²	29.1 m ²	
Bed depth	0.70 m	0.70 m	
Flow	13 m ³ .d ⁻¹	13 m ³ .d ⁻¹	
Hydraulic loading rate (HLR) - total	0.15 m ³ .m ⁻² .d ⁻¹	0.22 m ³ .m ⁻² .d ⁻¹	
Hydraulic loading rate (HLR) – working bed	0.45 m ³ .m ⁻² .d ⁻¹	0.45 m ³ .m ⁻² .d ⁻¹	
Operational cycle	2.4 d feed; 4.7 d rest	7 d feed; 7 d rest	
Number of batches per day	24	24	
Surface area	0.9 m²/inhabitant	0.6 m²/inhabitant	

Average influent and effluent concentrations in both phases

Parameter	Influent		Effluent				
			HLR (tot	1 (3 beds) al): 0.15m/d d): 0.45 m/d	Phase 2 (2 beds) HLR (total): 0.22m/d HLR (bed): 0.45 m/d		
Concentration (mg/l)	Phase 1	Phase 2	Planted unit	Unplanted unit	Planted unit	Unplanted unit	
BOD	279	242	36	38	44	46	
COD	465	558	71	70	267	198	
TSS	293	215	34	39	65	79	
TKN	31	39	14	15	19	23	
NH ₄ +-N	26	33	10	11	14	16	

Average of removal efficiency in both phases

	Phase 1	Phase 2	Phase 1	Phase 2
Removal efficiency (%)	Planted		Unplanted	
BOD	82	77	80	78
COD	81	5 6	81	61
TSS	85	64	74	57
TKN	56	50	54	38
NH ₄ +-N	59	61	61	40

Box-plot of BOD concentration during phases 1 and 2 in the planted and unplanted units

Box-plot of COD concentration during phases 1 and 2 in the planted and unplanted units

Box-plot of TSS concentration during phases 1 and 2 in the planted and unplanted units

Box-plot of ammonia concentration during phases 1 and 2 in the planted and unplanted units

Table: Statistical comparison (Mann-Whitney U-test) of removal efficiencies in phases 1 and 2 in the planted bed

Constituent	Mean removal efficiencies (%)		Statistics		
	Phase 1	Phase 2	p-value	NS/S (*)	
BOD	82	77	0.34643558	NS	
COD	81	56	4.8384E-06	S	
TSS	85	64	0.00042168	S	
TKN	56	50	0.26720049	NS	
NH_4^+ -N	59	61	0.77045632	NS	

(*) S: Significant difference

NS: Non-Significant difference (at the 5% significance level)

Mass Loading Rates in the systems in both phases

Parameter	Average Influent concentration (mg/l)		Mass Loading Rate in the working unit (g/m²d)		Mass Loading Rate in the whole system (g/m²d)	
	Phase1	Phase 2	Phase1	Phase 2	Phase 1	Phase 2
BOD	223	242	100	107	33	53
COD	429	558	192	251	64	126
TSS	227	215	100	96	32	48
TKN	32	39	13,5	17,2	4,5	8.6

Partial clogging in the VFCW unplanted filter

Date: 24/06/2013

5. Conclusion

- From the overall results, it can be concluded that the utilization of only the first stage of the French/Cemagref systems shows a large potential whenever simple systems are required for the treatment of raw domestic sewage in developing and warm-climate regions.
- Reduction of the first stage of the French system to only 2 units instead of 3 units (2/3 of the usual area) seems promising, although a reduction in removal efficiency was noted.

5. Conclusion

• The good performance and the associated simplicity, with no pre-treatment (apart from screens and grit removal), no post-treatment, no mechanization, no energy consumption and no sludge treatment make this system a very attractive alternative for developing countries when very stringent discharge standards are not applied.

Thank you