

CLARA: South Africa Pilot

- Capacity-linked water supply and sanitation improvement for Africa's peri-urban and rural areas

16th *October 2013*

Valerie Naidoo (Water Research Commission Marlene vd Merwe-Botha (Watergroup) Gary Quilling (Watergroup) Solly Manyaka (Kaleo Consulting) eThekwini Municipality (Teddy Gounden)

Outline

 ✓ Background : Selection of Sites (eThekwini Municipality)

✓ Case study 1: Frasers settlement

✓ Case study 2: Sarasvathi School

- ✓ Input to Simplified Planning Tool
 - ✓ Case study 1: Frasers settlement

✓ Conclusions

Background: Site Selection

Background: Selection of Sites

Fraser (ethekwini

Fraser Informal Settlement

Sarasvati Primary School

Case study 1: Fraser Settlement (eThekwini)

- ✓ Peri-urban(informal)
- ✓ PE 1000
- ✓ Water supply available
- ✓ Sensitive environment
- ✓ High unemployment (46%)
- Low income
- ✓ Agriculture based
- ✓ Low education levels

1. Testing the Tool: Fraser Settlement

Existing water services	Alternatives assessed	~
Pressure water supply from Umgeni water scheme from Hazelmere WPW via 300 mm dia pipeline at 6 kPa, gravity line with PRVs. Water offtake vai 75 and 50mm uPVC. Class A quality water	No alternatives assessed.	
5 standpipes and 5 CABs services 96.6% of population, boreholes the rest	Umgeni plan to upgrade the 300mm to 1m dia pipe, drawing from WPW.	

Existing sanitation services	Alternatives assessed			
1 = CABs and onsite waterborne septic tank &ABR	2 = CAB linked to offsite centralised waterborne sewer system			

Input constants for Alternative 1 & 2:

- Period of consideration: 50 years
- Net interest rate: should be 8.5%
- Expected annual growth: 1.8%

Example of process flow diagram : ALT 1 & ALT 2

FRASER TECHNOLOGIES INVESTIGATED

ALTERNATIVE 1 = CABs and onsite waterborne sanitation (CABS + SepticTank + ABR)

Wastewater collection:

- Technology 1: Sewer for CAB A-B
 - ♦PE 200, trench depth 0.8m, sewer length 66 78 m, depending in CAB
- Technology 2: collection of faecal sludge
 pick up points, 1x annum, 5 m³/a

- Technology 1: Septic tank for CAB A-E
 - **♦**PE 200, 1x tank 6mx3mx2m
- Technology 2: ABR for CAB A-E
 - •1x ABR 6mx3mx2m

FRASER TECHNOLOGIES INVESTIGATED

ALTERNATIVE 2 = CABs and centralised waterborne sanitation (CAB's + sewer (to existing WWTP)

Wastewater collection:

- Technology 1: Sewer for CAB A-B
 - ♦PE 200, trench depth 1.2m, sewer length 283 560 700m, depending in CAB

- ♦Flow 1.2 m³/h, 56 pressure head (actual is 6m but tool require +50 factor)
- Technology 3: Sewer
 - •PE 400 for 2 CAB inputs, trench depth 1.2m, length 700m

etc up to Technology 6.

Results from SPT: Fraser Settlement

Alternative Name	Investment Costs	Σ Reinvestment Costs	Σ O/M Costs	Σ Revenu es	Total Costs/Profit s	Final Residual Values
Current - CAB and on-site sanitation: Sewerage Collection to septic tank & ABR	€ 533 773	€ 3 093 346	€ 2 925 743	€0	€ 4 631 573	€ 293 589
Future - CAB are linked to waterborne system	€ 204 812	€ 403 278	€ 512 387	€0	€ 851 048	€ 71 428

Cost distribution of alternatives

Results from SPT: Fraser Settlement

- ✓ Current selected option of on-site sanitation not feasible as a permanent service option over 50 year lifespan: conventional service provision more feasible and one has to make the decision with the following considerations:
 - ✓ Informal
 - ✓ Private land
 - ✓ Subsidised service

Case study 2: SARASVATHI SCHOOL (eThekwini)

- ✓ Primary school
- √ 325 learners, 10 educators
- ✓ Public school on private land
- ✓ No agreement.

- School serves impoverished community (mainly of migrant labourers,
- Have basic water and sanitation services.

Site 2: Testing the Tool: SARASVATHI

Existing water services	Alternatives assessed	
1 = Same pressured, unmetered supply; Two standpipes, 4 taps at water troughs supply at 10l/day (9 kl/month). Supply 350	2 = Equip rainwater harvesting tanks to augment existing service. (possibility)	
people with Class 0 water.		
Existing sanitation services	Alternatives assessed	
1 = 3 ablution buildings, 8 toilets, uPVC pipe of 12m 110mm feeds to 2 septic	2 = Tamper resistant ablution with 12 toilets, network to ABR // septic tank /	
1 = 3 ablution buildings, 8 toilets, uPVC	2 = Tamper resistant ablution with 12	

Input constants for alternatives:

- Period of consideration: 30 years
- Net interest rate: should be 8.5%
- Expected annual growth: 0% (no plan to expand school)

biogas

Example of process flow diagram : ALT 1,

& 3

SARASVATHI TECHNOLOGIES INVESTIGATED

ALTERNATIVE 1 = ablution and septic tanks

Wastewater collection:

- Technology 1: Sewer
 - ♦PE 350, trench depth 0.8m, sewer length 12m

♦PE 350, discharge black & grey water from ablution facilities only

♦1x 5000l tanker used, discharge to Tongaat WWTW every 12-24months, 5m³/pick up, 12km distance

- Technology 1: Septic tank
 - ♦PE 350, 2x tanks (6mx3mx2m)

SARASVATHI TECHNOLOGIES INVESTIGATED

ALTERNATIVE 2 = ablution and septic tanks/ABR

Wastewater collection:

- Technology 1: Sewer
 - ♦PE 350, trench depth 0.8m, sewer length 140m
- Technology 2: Cesspit
 - ♦PE 350, discharge black & grey
- Technology 3: Collection of faecal sludge
 - ♦1x 5000l tanker, discharge to Tongaat WWTW every 12-24months, 5m³/pick up, 12km distance

- Technology 1: ABR
 - ♦PE 350, 1x reactor (6mx3mx2m)
- Technology 2: Septic tank
 - •PE 350, 1x reactor (6mx3mx2m)

SARASVATHI TECHNOLOGIES INVESTIGATED

ALTERNATIVE 3 = resource-oriented

Wastewater collection:

• Technology 1, 2, 3 same as per Altern. 2: Sewer/Cesspit/Sludge

- Technology 1: ABR
 - ♦PE 350, 1x reactor (6mx3mx2m), 80% removal rate

- Technology 2: Septic tank
 - ♦PE 350, 1x reactor (6mx3mx2m), emptied 1x/24months
- Technology 3: Sludge dewatering
 - ♦Sludge volume 4.2m³/d, TS 5%, anaerobically stabilised, sludge volume 1540m³/a

- Technology 4: Composting beds
 - •Faeces from UDDTs 0 (N/A), 0.84m³/d dewatered sludge, biowaste N/A

Results from SPT: Sarasvati School

	Alternative Name	Investment Costs	Σ Reinvestment Costs	Σ O/M Costs	Σ Revenues	Total Costs/Profit	Final Residual Values
	Historic on-site Sanitation	€ 621 455	€ 676 519	€ 314 533	€0	€ 1 273 559	€ 201 585
2	Current Sanitation	€ 648 786	€ 695 130	€ 315 900	€0	€ 1 320 301	€ 211 972
	Resource Orientated option	€ 730 657	€ 777 619	€ 406 392	€ 86	€ 1 533 745	€ 235 466

Results from SPT: Sarasvati School

- ✓ cost progressively increases with adding of additional service options
- ✓ historical situation had deteriorated and needs to be upgraded to comply
- ✓ resource orientated option does not generate substantial revenue:
 - √ Impact negligible
 - ✓ If risks managed could have value around "living lab" concept
 - ✓ Linking to biogas and crop production

Conclusions

➤ Tool is ambitious, but will give good 1st order base to inform decisions on system options

- > Gives clear difference for distinctive system options:
 - > Decentralised waterborne

➤ For on-site systems — where changes are incremental due to addition of unit processes to meet specific performance improvements and services, the additional cost may be less significant over the life-cycle.

Finally, by testing the following options, it allows one to think about the options tested under the specific assumptions and refine and test further.

THANK YOU

Acknowledgements

The work is carried out within the project CLARA (Capacity-Linked water supply and sanitation improvement for Africa's peri-urban and Rural Areas; Contract # 265676; duration: 1.3.2011 – 28.2.2014; http://clara.boku.ac.at/), a Collaborative Project funded within the EU 7th Framework Programme, Theme "Environment"

