Theme 1 Waste & Water Management

How to get the most out of it

BILL&MELINDA GATES foundation

Content

- What to do with poo & pee?
- Water usage and grey water treatment
- Transport of human waste
- Discussion sessions
 - 1. Transport of human waste
 - 2. Grey water treatment
 - 3. Capacity sanitation blocks

What to do with poo?

Microwave Plasma Gasification

- Creates syngas for electricity generation
 Potentially (beyond) self-sufficient
- Immediate elimination of pathogens
- Fast processing, limited storage
- Sterile P-rich ash for local use or export
- Modular & compact equipment

Required feed >2,000 people per day

BILL& MELINDA GATES foundation

BILL& MELINDA GATES foundation

What to do with pee?

BILL&MELINDA GATES foundation

What to do with water?

Water consumption

- Excessive use of water as part of toilet ritual India (~4 liter/person)
 - Hand washing
 - Anal cleansing
 - Maintenance
 - Other activities
- Retain & recycle, because:
 - Transport of water is not desirable
 - Reliable water supply at facilities

BILL & MELINDA
GATES foundation

Urine diversion?

Urine diversion?

Barriers:

- Physical (gender differences)
- Technical (cross-contamination, clogging due to misuse, not easy to convey isolated feces)
- Social (user acceptance, conservative attitude others)
- Economic barriers (low market value struvite)
- Operational barriers (cleaning difficulty, additional infrastructure and transport line)

BILL&MELINDA GATES foundation

Urine diversion?

Perceived stigmatization

Urine diversion?

BILL&MELINDA GATES foundation

Our proposal

Quantifying waste & water

How to determine capacity of sanitation blocks?

- Proximity
- Sharing (sense of ownership/accountability)
- Costs
- Space occupation
- Presence of caretaker & shop
- ...

BILL & MELINDA GATES foundation

Quantifying waste & water

Target area: 20m radius, >400 people

Users: 70% = 300 people

Toilets: 7 (Indian governmental norm 1:50)

» 3 for men plus additional urinals

» 4 for women

Quantifying waste & water

Visits per user: 2,5 times per day (once defecation)

Feces: 250 gram (100-300 gram)

Urine: 300 ml (100-600 ml)

Water: 2 liter (cleansing) + 2 liter (hand wash)

+ maintenance

BILL&MELINDA GATES foundation

Quantifying waste & water

Quantifying waste & water

Peak hours (6.00am-9.00am):

- 80% of community (250p) shows up, 90% defecate
- >100 liter waste collected (~50% of daily amount)
- >300 liter/hr water consumed (~33% of daily amount)

What more can we expect?

Incidental & accidental waste

Design of water diverting toilet

Why?

- Reduce transport volume
- Less dewatering
- Recycle water

Diversion efficiency is critical!

Design of water diverting toilet

How?

- Low-(or no)-tech
- Do not rely on user
- Rather, connect to beneficial activity for user

Design of water diverting toilet

Design of water diverting toilet

Hand shower:

- Climb sanitation ladder
- Positive (new) experience
- Control water consumption

Design of water diverting toilet

Grey water treatment

What?

Around 3,000 liter per day (toilet + taps + maintenance)

Contains: feces/urine, pathogens, blood, soaps,

hormones, medicines, etc.

How?

Filtration: Septic tank

Sand filtration

Disinfection: Passive solar (UV) disinfection

Sand filtration

BILL & MELINDA GATES foundation

Solar disinfection

Solar disinfection

BILL & MELINDA GATES foundation

Solar disinfection + TiO2

Benefits TiO2 catalysation:

- Smaller surface area, higher flow rate
- Deactivate micro organisms

S_o = 0.25 so²
Solid symbol [TiO₃]=Songl.
Open symbol [TiO₃]=0

-0-22 Limin
-0-13 Limin
-0-5 Linin

Q_{1,N} = k3L

Fig. 7. Inactivation of Escherichia coli under solar phenocatalysis [TiO₃] = 50 mg/L. 0.25 m² of irradiated surface and three flow nates: 22.5, 13.0 and 5.0 L/min (solid symbols) and for experiments made without catalyst under solar radiation (open symbols).

Input-output model overall system

Demand - sanitation blocks:

- Water pump(s), lights, etc.
- Water replenishment

Demand - central plant:

- Plasma gasifier
- Drier
- Conditioner, screw press

Demand - plant/external:

- Agriculture
- MFC?

Supply - sanitation blocks:

• Human waste (poo+pee)

Supply - central plant:

- Electricity
- Surplus (heat, gas, electr.)
- P-rich ash
- K,N,S-rich water

Transport of human waste

What reality looks like

What reality looks like

Considerations

What?

~300-500 l/day (~5% DS) for a 7-toilet sanitation block

How?

- Feasible within the narrow streets of urban slums
- Safe for workers and community
- Non-stigmatizing (looks, smell, etc.)
- Profitable:
 - Who is in charge?
 - Frequency of collection?

• ...

Discussion #1

Transport of human waste

- What are important considerations when transporting human waste in urban slums in India?
- 2. Given these considerations, what are best practices or new practices?
- 3. How to make a business out of transport of human waste when there is little money available?

BILL & MELINDA GATES foundation

Discussion #2

Grey water treatment

- What is the technical feasibility of sand filter, UV as well as fully integrated system? (0&M)
- 2. What is the economic viability of this system?
- 3. Will people accept water that is recycled?

Discussion #3

Capacity sanitation blocks

- How many users and visits per user can be expected, how many toilets are needed? (consider genders)
- 2. How to anticipate to the uncertainty of waste & water quantities?
- 3. Can water consumption (cleansing, flushing, hand washing) be reduced in "washer" cultures like India?

