A toilet system based on hydrothermal carbonization

Simon Martin

Department of Materials
Loughborough University
U.K.

BILL & MELINDA
GATES foundation

Faecal Sludge Management Conference FSM2

International Convention Centre (ICC) Durban 29-31 October 2012

The rest of the Loughborough team

- Sohail Khan WEDC
- Richard Holdich Chemical Engineering
- Andrew Wheatley Civil Engineering
- Diane Gyi School of Design
- Eric Danso-Boateng PhD student

Outline

- RTTC
- HTC
- Chemical effects.
- Energy balance
- Batch versus CF
- Coatings
- Inclusive design

RTTC

- Call to develop new technology for handling and processing of human waste into useful products
- \$0.05/user/day
- Process complete in ~24 hours
- Off grid
- Make the toilet a pleasant and safe experience

Meeting the challenge at Loughborough

- No one research group with required expertise
- Loughborough University has a mechanism for bringing together expertise across the university— Interdisciplinary Research Schools
- A team from across the university was put together to see if a useful bid could be put together.

Meeting the challenge

- Realistically liquid/solid separation will be difficult
- Aim for a system that works in liquid/solid mixtures
- Anaerobic digestion is too slow
 - Not easy to install in many locations
 - Effluent still needs to be dealt with
- Hydrothermal Carbonization?
 - Works for vegetation based biomass what about sewage?

Hydrothermal Carbonization

Works via dehydration of carbohydrates:

$$C_6H_{12}O_6 \longrightarrow C_6H_6O_3 + 3H_2O \longrightarrow C_6H_2O + 5H_2O + Energy$$

- With biomass get other products:
 - Soluble/volatile organics, some gas
- Main product is a lignite like material coal
- Key points:
 - Process works in water
 - Process is exothermic—creates own heat*

Understanding the process

 Simulant* and sludge from sewage works processed

- Batch based measurements
 - Solid loadings: 5-25% (by weight)
 - Temperatures: 140-200°C
 - Conversion times: 0-6 hours

140° C

- Maximum pressure = 7.5bar (Saturated pressure=2.6bar)
- None of the experiments carbonised
- Some products became slightly darker
- Product cannot be filtered
- From 2 hours, water can be poured off as product and liquid in clear layers in vessel7

160° C 20mins 50mins 140mins 320mins

- Maximum pressure = 12bar (Saturated pressure=5.2bar)
- Product carbonised after 6 hours
- Some products became slightly darker
- Carbonised product is easily filterable

180° C

- Maximum pressure = 16bar (Saturated pressure=9bar)
- Product fully carbonised from 2 hours
- No visible reaction immediately after heating
- Much darker after 30minutes, with black flecks starting to appear (initial stages of carbonisation)

200° C

- Maximum pressure = 20bar (Saturated pressure=14.5bar)
- All products carbonised
- Slightly greater mass loss at longer times

HTC analysis

 Compared mass of char material to original mass of solids

$$m = m_0 \exp^{-k_B T}$$

- Use Arrhenius analysis:
 - Obtain rate constant and activation energy

Activation energies

Simulant: 90.0 kJmol⁻¹

Loughborough

Sludge: 72.7 kJmol-1

HTC analysis

- HTC works on synthetic faeces and primary sludge
- Other work has looked at C:H:O ratios fits with observations
- Find that have sterile, easily filterable material after 15 minutes at 200°C
- No need to go further wastes energy

HTC analysis-the energy balance

The process works in water

- /
- Water has a high heat capacity
 - It costs a lot of energy to heat the water to the required temperature

- Weight for weight about 4X the energy for organic materials
- Is there enough energy in the char to drive the system?

Thermodynamics can help us

- We know:
 - heat capacities of water, most organics
 - Temperature change required
- Use spreadsheet to investigate breakeven conditions:
 - Investigate the effect of energy value of the solids and the concentration of the solution

Energy balance

- For solids energy values ~17MJ/kg get excess energy at 5% solids and 200°C
- For lower energy values have to move to higher solid concentrations
- Extreme case: 4MJ/kg→16% solids
- The energy is there will have to be careful with flush volumes

Initial concept – batch processing

Our current concept—continuous flow

Use flash off steam to preheat material

Char solids easily separated by filter

Liquids processed by rapid AD (small molecules → 3-4 hours)

Reduced thermal cycling – extends lifetime

Ideally use gas as fuel – can adjust output ratios via temperature/pressure

CF HTC system

- Products are sterile
- Some of the water can be used for flushing
- Generates own fuel—off grid
- Once up to heat can be close to self-sustaining
 - Need to make sure that heat is recycled
- Hydro char can:
 - Supplement fuel supply
 - Be used as soil conditioner
 - Be used as fuel for cooking/heating

Filtration

Use microslot filter:

- Operates much better than circular filter holes
- Optimize aspect ratio for application
- Low clogging

Chamelic layers-block copolymers

In water - forms micelles

The polymer causes water to spread out on the surface washing dirt away

When dry the charges on the polymer repel dust

Responsive layers – results

Flush samples with water at flow rates similar to toilet flush

Before After

Cham-1

Cham-3

Control

Design-the "User interface"

- Design research and development underway
- Inclusive design principles at heart of process
 - User engagement paramount age, gender, culture, education, local sanitation behaviours
 - Primary and secondary users
- Solutions to the 'design challenges' explored
 - specification, prototyping and testing of full mock-ups

Water treatment

- Some water will be used for flush
- The remaining water is sterile
- Intend to use electrochemical treatment to further purify.

Conclusions

- HTC is a viable route to processing human waste
- Water:solid ratio is very important
 - Responsive layers can help
- Inclusive design principles being used to develop "human interface"

Thank you – Any questions?

Products of HTC

