
# Design objectives

- Recovery of energy from faeces solids stream
- Recovery of water from faeces
- Production of a sterile, nutrientrich product in a form suitable for agricultural applications
- Disposal of waste streams from other unit processes within the toilet

# Concept

The faeces and solids processing operation consists of three stages: (i) extruder-separator unit; (ii) dryer and (iii) combustor.

The extruder-separator converts the mixed solids stream into an optimal form for efficient drying, whilst removing solids that cannot be readily combusted. The dryer stage reduces water content in the solids to a level where efficient combustion can occur. The water is recovered via a condenser and sent for further treatment before being recycled back to the ablution block water supply. The combustor performs the energy recovery function, supplying energy back to the dryer and potentially to an electricity generation process. Waste streams from other unit processes within the toilet – waste solids from the urine processing and odourous air from the toilet pedestal - are also disposed of via the combustor.



## FIGURE 2

Examples of non-faecal material found in community ablution block and household latrine samples: (a) plastic packaging; (b) newspaper; (c) hair extensions; (d) clothing.

# EXTRUDER

Separation of faeces and non-faecal solids: a variety of solid materials may enter the toilet in the community ablution block context (toilet paper, newspaper, plastics, rubber, clothing) (see Figure 2), some of which may require pre-treatment (shredding) or complete removal from the feed stream to the dryer.

Extruder separates faeces from other solids by using a ram to pressurise the mixed solids stream, causing faeces to be extruded through holes in the external casing and tramp material to accumulate against the endplate (see Figures 3 and 4).

Extruder forms faeces into a geometry which allows for more energy-efficient drying and combustion (see Figure 4c). The pellets formed must have sufficient structural integrity to remain intact through the downstream processes.

Segregated faeces has more predictable rheological and thermal properties than the mixed solids stream allows for better design of downstream unit operations.

FIGURE 3 EXTRUDER CONCEPT

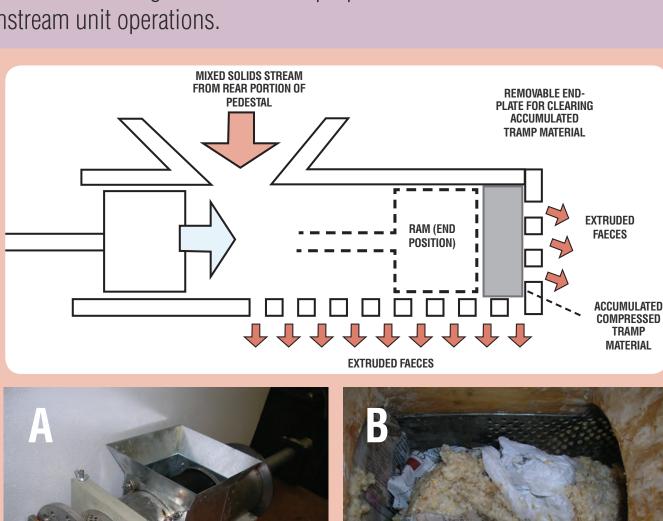



FIGURE 4 PROTOTYPE **EXTRUDER:** 

# **A** Extruder;

- **B** Mixed solids stream In hopper;
- **C** Extruded simulant faecal material;
- faecal material at end of extruder
- **D** Accumulated non-

# Design data requirements:

The extruder must be designed to achieve (i) efficient separation of faeces and non-faeces components and (ii) consistent production of pellets suitable for drying and combustion. The following data is required to support the design:

- Composition of the mixed solids stream types and quantity of non-faecal material;
- Flow behaviour (rheology) of the faeces stream and dependency on environmental factors;
- Physical properties of the faecal and non-faecal material.

# (1) Sample characterisation

Faeces samples from (i) individual donors and (ii) mixed batch samples from a community ablution block have been collected and analysed.

Figure 2 indicates the variety of non-faecal solids that may enter a toilet in a community ablution block. Table 1 describes the Bristol Stool classification system for faecal material, and links its categories to the water content measured in the samples we collected. Considerable variation has been observed in the physical consistency and water content of the samples analysed (Figure 6).

# TABLE 1

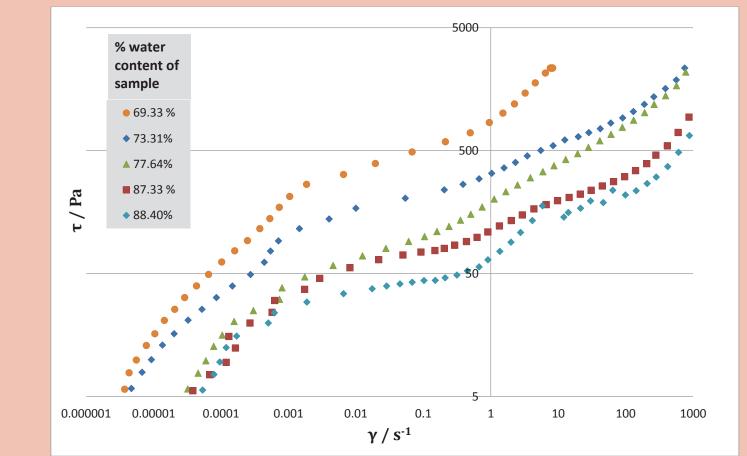
Bristol stool classification system for faeces. Water content range for each category based on our analysis of human faeces samples.

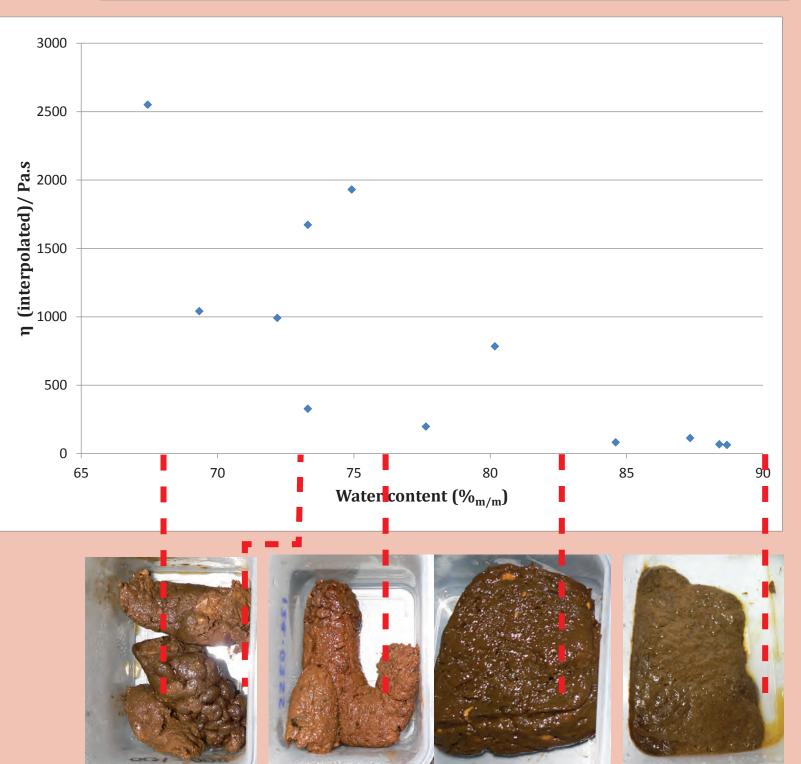
| Bristol<br>Class | Image<br>(Brettle 2011) | Description<br>(Lewis 1997)                | Water content range |
|------------------|-------------------------|--------------------------------------------|---------------------|
| Type 1           | ••••                    | Separate, hard lumps,<br>like nuts         | Up to 53%           |
| Туре 2           | 666                     | Sausage shaped, with deep cracks and lumps | 53% - 60%           |
| Туре 3           | STATE HAR               | Sausage shaped, with<br>light cracks       | 60% - 67%           |
| Type 4           |                         | Sausage shaped, smooth and soft            | 67%-77%             |
| Type 5           |                         | Soft blobs with clear edges                | 77%-85%             |
| Туре б           | and which               | Soft, fluffy blobs with ragged edges       | 85% - 95%           |
| Type 7           |                         | Entirely liquid with<br>no solids          | Over 95%            |

### (2) Rheology study


The viscosity of faeces directly affects the applied pressure required to achieve extrusion, the dimensions of extruder required and the quality of pellets produced. Viscosity itself may be dependent on the following factors: (Franck 2004 and Gabas et al. 2012)

- The composition of the fluid, particularly moisture content and presence of
- long-chain molecules; • The magnitude of shear rate applied;
- Temperature;


FIGURE 5


• The length of time for which a shearing force is applied.

Rheological tests to analyse the expected behaviour of faeces within the extruder have been performed on human faeces samples, across a range of water content (59.2 to 88.7%). Selected results are presented in Figures 5 to 8.

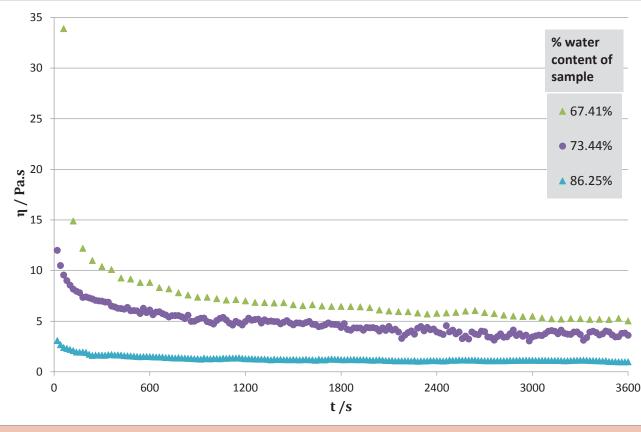


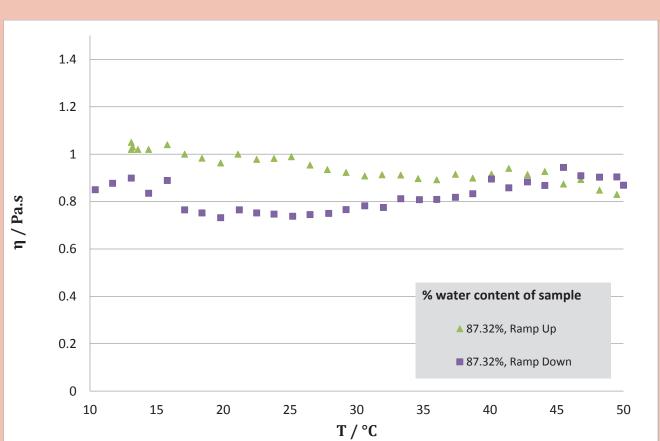
Variation of shear stress with shear rate for fresh human faeces samples of varying water contents (measured at 25 °c)





### **FIGURE 6**


Variation in dynamic viscosity of fresh human faeces with water content of sample (applied shear rate of 1 s-1 at 25 °c) and visual appearance of samples corresponding to different water contents.


#### FIGURE 7

Variation in dynamic viscosity with time for fresh human faeces (applied constant shear rate of 100 s-1 at 25 °c). Preshear of the solids stream may be beneficial if lower viscosities desired for downstream processing functions

#### FIGURE 8

Variation in dynamic viscosity with temperature for fresh human faeces (applied constant shear rate of 100 s-1, sample water content 87%)





### (3) Physical properties of faecal matter

Other characterisation work supporting the rheology study:

Samples have been analysed for volatile solids content and will be analysed for volatile fatty acid (VFA) content. High levels of these may indicate a higher concentration of longer chain molecules which could impact upon the viscosity of samples. The significance of this factor relative to water content is yet to be determined.

Particle size distribution analysis of faeces samples may provide further explanations for particular rheological behaviours.

An approximate density measurement is made for each sample, to check for any correlation with rheological data.

Removal of water from faeces pellets to produce a product suitable for efficient combustion Diversion of humid air to a condenser for water and energy recovery Efficient energy exchange between heated exhaust gases from combustor and wet feed material

## **Design data requirements**

design for efficient drying.

### FIGURE 9

Variation in equilibrium moisture content of different foodstuffs with air relative humidity

Foodstuffs exhibit significant differences in the shape of their equilibrium moisture content curves. Variation therefore may be expected between faeces samples from subjects with different diets. The equilibrium vapour pressure above a sample is determined by temperature, the water content of the sample, the way that the water is bound within the material and by the presence of dissolved solutes in the water (Earle 1983).

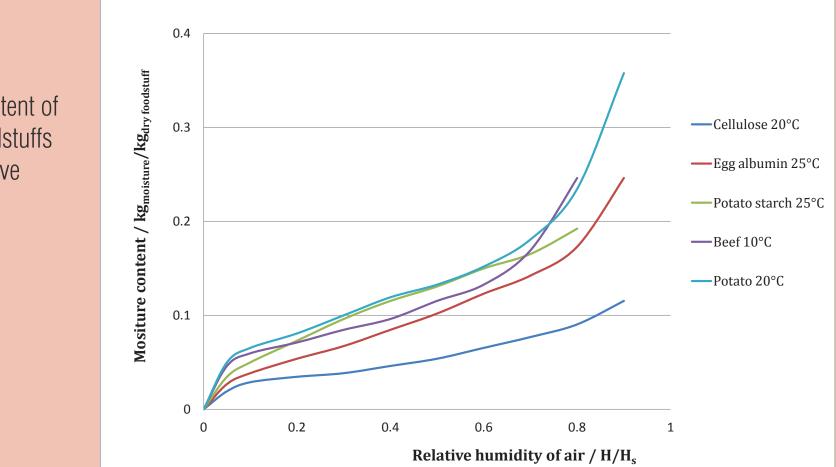
## **DESIGN PRINCIPLES**

unit processes.

The combustor should be designed to produce (i) the maximum amount of thermal energy possible and (ii) maximum recovery of useful nutrient components in the ash product. This will be dependent on the composition of the feed and the efficiency of the combustion process. The design data required includes: • Chemical composition of the feed stream – concentrations of nitrogen, phosphorus, potassium and micro-nutrients present;

## FIGURE 10

Gross heat of combustion (dry solids basis) for different fuels


Little data has been found in the literature on the calorific value of human faeces. Figure 10 provides a comparison of the gross heat of combustion of different faeces-related fuels and 'conventional' fuels. The comparison indicates: • Significant variation exists in calorific value between 'similar' fuels – e.g. wastewater sludge

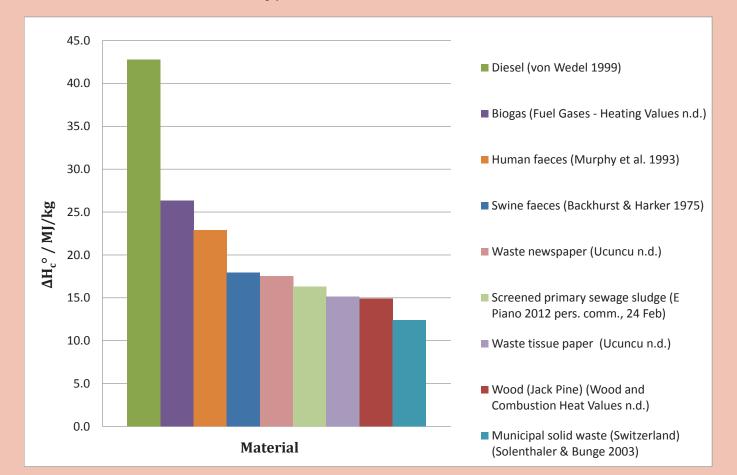
and animal faeces; • The calorific value of a mixed solids stream (including toilet paper and newspaper) could be significantly different to a feaces-only stream.

# DRYER

The dryer must be designed to (i) dry the feed material to a water content where it can be combusted efficiently; (ii) use the minimal quantity of energy to do this; (iii) recover energy from the combustor with the highest efficiency possible. Work here is focused specifically on (i) and (ii) - production of data to

Rates of drying are generally limited by heat transfer rates, although in some instances mass transfer of water may be the limiting factor. The aim of the drying experiments being carried out is to produce drying curves for a variety of faeces samples under a range of different, well-defined environmental conditions (temperature, humidity and and flow velocity of the air used for drying). For a given set of environmental conditions, a particular sample will dry up to a moisture content that is in equilibrium with the relative humidity of the air surrounding it. The equilibrium moisture content of a sample at a specified air relative humidity is extremely substance-specific (Figure 9).






Efficient combustion of dry pellets in a fluidised bed incinerator. Exhaust gases to dryer for energy recovery. Energy recovery should be sufficient to supply requirements of the other toilet

Sterile, nutrient-rich ash product produced for use in agricultural applications.

#### **Design data requirements**

• Calorific value (energy content), specific heat and thermal conductivity of the feed stream; • Determination of reactor conditions required for most efficient combustion (combustion temperature, feed moisture content, feed density)



Because of the reliance of the toilet processes on energy recovery from the faeces stream, it is critical to understand how much energy is available for recovery, and whether this will cover the energy requirements of the overall toilet system.

Backhurst, JR & Harker, JH 1975, 'Evaluation of Physical Properties of Pig Manure', J. agric. Engng Res., vol. 19, pp. 199-207.

Brettle, JP 2011, File:Bristol stool chart.svg, viewed 20 July 2012, http://en.wikipedia.org/wiki/File:Bristol\_stool\_chart.svg Earle, RL 1983, Unit Operations in Food Processing, viewed 20 July 2012, http://www.nzifst.org.nz/unitoperations/drying4.htm

Franck, A 2004, Understanding rheology of structured Fluids, viewed 18 July 2012, http://www.tainstruments.com/pdf/literature/AAN016\_V1\_U\_StructFluids.pdf

Fuel Gases - Heating Values n.d., viewed 21 July 2012, http://www.engineeringtoolbox.com/heating-values-fuel-gases-d\_823.html Gabas, AL, Cabral, RAF, de Oliveira, CAF & Telis-Romero, J 2012, 'Density and rheological parameters of goat milk', Ciênc. Tecnol. Aliment., Campinas, vol. 32, no. 2, pp. 381-385. Lewis, SJ & Heaton, KW 1997, 'Stool Form Scale as a Useful Guide to Intestinal Transit Time', Scand J Gastroenterol, vol. 32, pp. 920-924.

Murphy, JL, Wootton, SA & Alan, AJ 1993, 'Variability of fecal energy content measured in healthy women', Am J Clin Mutr, col. 58, pp. 137-140.

Solenthaler, B & Bunge, R 2003, Waste incineration in China, viewed 18 July 2012, http://www.seas.columbia.edu/earth/wtert/sofos/Waste\_Incineration\_China.pdf Ucuncu, A n.d., Energy recovery from mixed paper waste, viewed 25 July 2012, http://infohouse.p2ric.org/ref/11/10059.pdf

von Wedel, R 1999, Marine Biodiesel in Recreational Boats, CytoCulture International, Inc., Point Richmond, CA Wood and Combustion Heat Values n.d., viewed 21 July 2012, http://www.engineeringtoolbox.com/wood-combustion-heat-d\_372.html