High Performance Constructed Wetlands for Cold Climates

Petter D. Jenssen*, Trond Mæhlum**, Tore Krogstad* and Lasse Vråle***

- * Plant and Environmental Sciences, Norwegian University of Life Sciences
- ** Norwegian Centre for Soil and Environmental Research
- *** Dept. Mathematical Sciences and Technology, Norwegian Univ. Life Sciences

Presentation overview

- About Norway and climate
- Development of design for cold climate insulation needs and pretreatment
- Removal results and mechanisms
- Reuse of wetland substrate saturated with phosphorus

Thermal properties of various materials and insulation equivalent to the insulation provided by 10 cm of Styrofoam.

Material	Therm. cond (W/mK)	Specific heat (J/m ³ °C)	Density (kg/m ³)	Eq. thickness to 10 cm Styrofoam (cm)
Styrofoam	0,030		@??	10
Air	0,025	0,003		8,3
Water	0,57	1,0	1000	190
Ice	2,2	0.45	920	733
Snow	0,049 - 0.190		100-700@	16
Peat dry	0.061)	0,35	100-300	20
Peat fc b)	0.291)	0,5	@??	97
Peat sat c)	0,5-1,25 ?	0,7	900-1200	166
Straw dry	0,09		@??	30
Sand Haugstein	1.77#		1710#	590
@Sand Haugstein fc	1,78#		1710#	590
Leca (0- 4 mm) sat c)	0.56#		340#	186
Leca (0- 4 mm) unsaturated	0,07#		340#	23

Note: ^aData from Hillel 1980, Incropera and DeWitt 1981, Norsk Standard 1987, Sundberg 1988. ^bAt field capacity. ^cAt saturation. # own measurements

Frost mitigation

- Increase the depth
- Keep the water level at least 10 cm below the surface of the wetlandInsulate with straw (new systems)
- Freeze an ice cap

	LWA use	d 8 years	LWA before use
	Inlet zone_	Outlet zone	Background
Cd	< 0.4	< 0.4	<0.4
Pb	<4	<4	<4
Cu	18.0	20.3	
Zn	22.9	26.8	19.1
Ni	28.0	19.1	17.6
Cr	17.8	18.2	15.3
Co	4.7	4.6	4.1
V	17.1	16.9	15.0

High Performance Constructed Wetlands for Cold Climates Conclusions

- Constructed wetlands with pretreatment biofilters remove > 90% of P 40-60% of N. P, and bacteria to meet European standards for swimming water quality
- Constructed wetlands with pretreatment biofilters produce an effluent quality not affected by season
- Pretreatment biofilters that nitrify and reduce BOD are a necessary component of cold climate CW's

High Performance Constructed Wetlands for Cold Climates Conclusions

- Better prediction of the long tm P-sorption and further optimizing of the PBF will yield more cost effective sytems
- Greywater treatment needs less area and open for decentralized treatment of greywater in urban areas

High Performance Constructed Wetlands for Cold Climates Conclusions

- Low heavy metal accumulation facilitates reuse of P-saturated filter material as fertilizer
- The fertilizer effect of P-saturated LWA is comparable to mineral fertilizer

