

Septage Management in India Decentralized treatment strategies

Anu Rachel Thomas

Praveen Rosario A, Ligy Philip, Martin Kranert

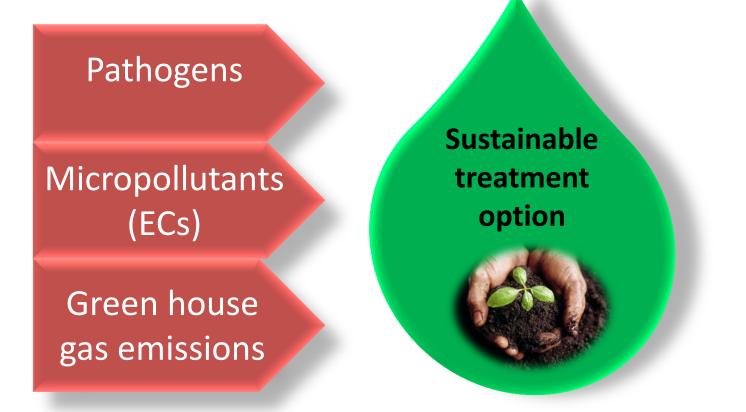
Indian Institute of Technology Madras, India University of Stuttgart, Germany

सत्यमेव जयते Department of Science and Technology Ministry of Science and Technology Government of India

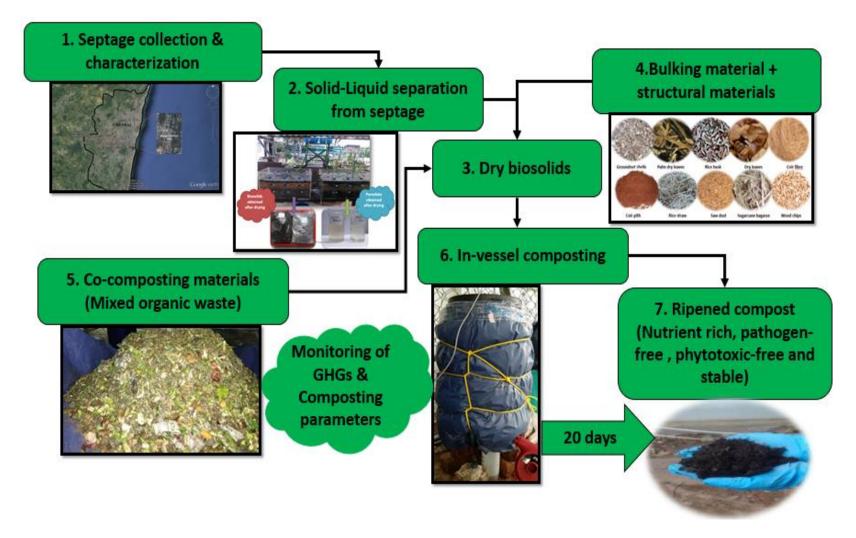
Outline

- Problems
- Sustainable solution
- Lessons learned

Septage management in India Disposal practices and problems


- Total sanitation coverage in India 50%
- Dependence on Septic tanks -22.2%
- Poor maintenance and disposal practices
- No treatment strategy for effective management

Untreated septage disposal


Targets in Septage management

Objective

Sustainable management of septage by co-composting and understanding the process dynamics during composting

Approach for septage treatment

Septage collection from Chennai city

Characterization of Septage in Chennai city

Parameters	No: of Samples	Concentration (mg/L)								
		Pre Monsoon				Post Monsoon				
		Maximum	Minimum Average SD I		Maximum	Minimum	Average	SD		
TS	120	6940	1000	2185	1070	17467	1010	3555	2935	
VS	120	4753	307	1414	657	14400	10	1541	2157	
TSS	120	4010	105	712	602	11200	27	1103	1908	
VSS	120	2337	57	463	382	9760	10	842	1566	
SS	120	850	50	288	170	850	0	94	116	
sBOD	120	240	30	117	54	1896	40	211	220	
COD	120	2400	80	905	603	6656	160	1460	1295	
sCOD	120	1064	16	336	272	4296	64	427	485	
Ammonia	120	84	3	16	13	129	2	32	24	
TN	120	313	19	94	65	500	4	58	65	
ТР	120	236	7	77	43	182	5	54	36	
Sulphate	120	209	16	76	41	612	2	99	118	
Sulphide	120	28	0	10	6	61	0	10	12	

Krithika et al., 2017

Septage Dewatering

using Sand drying bed and Reed drying bed

	Filtrate Quality				
	Parameters	Concentration in mg/L			
		Raw septage	Reed bed	Sand bed	
		quality	percolate quality	percolate	
A REAL PROPERTY AND A REAL				quality	
	Total solids	12733	1716	2003	
	Volatile solids	7013	1770	1397	
	Total Suspended	10787	133	267	
Biosolids Percolate obtained	Solids				
obtained a story dring set of the dring	Volatile Suspended	5313	123	213	
after drying	Solids				
SAND BILL	BOD	1150	510	540	
Filter Rive	Soluble BOD	990	300	330	
	COD	9920	3520	4800	
	Soluble COD	5440	2280	960	
DST-IGCS Proven Presentation			FSM	9	

Available bulking agents in Tamil Nadu

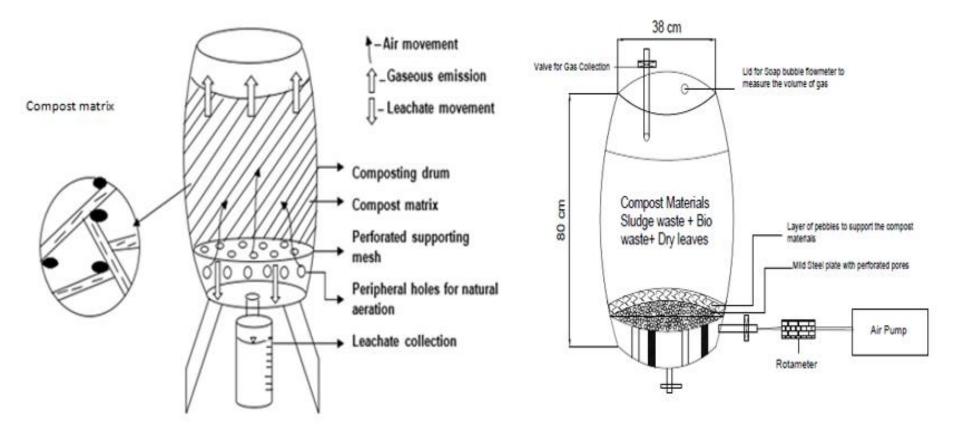
A. S. S. S.	1473	AREA	APR .	a len	Composting materials	Moisture content (%)	Organic matter (%)	C/N ratio	Water holding capacity (g of water/ g of	Bulk density	Air filled Porosity (%)
家大门之下	MAN	RUM	and the	的目标。图					material)	(kg/m³)	
Carlos and and	E	ANT	A RUA				Bulking agent fo	r comp	osting		
No. Contraction		1 Can	De -	AN THEY	Bagasse	5.14	81.18	62	6.79	200	85.03
The second second	The second second	AN AND	Sand	All the Car	Straw	6.83	65.50	54	4.30	220	82.37
and the second		79/2	A	LINGS.	Wood chips	7.17	70.20	500	2.03	120	89.41
Groundnut shells	Palm dry leaves	Rice husk	Dry leaves	Coir fibre	Saw dust	11.04	75.20	779	4.35	95	90.95
and the second	TONICA	and the		a Smart Slift	Dry leaves	5.29	62.96	60	2.15	70	93.96
	CRACTORS OF	是这种这次	North N	RETER	Coir fibre	8.06	64.29	26	3.38	84	92.88
	New York			KAN KINA P	Coir pith	19.66	64.08	53	5.07	70	93.78
		Stall -	VICENTY.		Rice husk	8.02	48.20	47	1.82	75	93.11
		The states	ALL AND AL	THE REAL PORT	Groundnut shells	8.88	49.37	24	1.97	130	88.17
A REAL AND A	THE REAL PROPERTY OF	and the second	IN SEC.	Bar	Palm dry leaves	7.34	45.12	20	1.42	92.8	91.48
Coir pith	Rice straw	Saw dust	Sugarcane bagasse	Wood chips			Substrate for a	compos	ting		
					Dewatered						

 Order of suitable bulking agent (mainly based on water holding capacity & air filled porosity):

septage solids

81.18

0.72


300

85.03

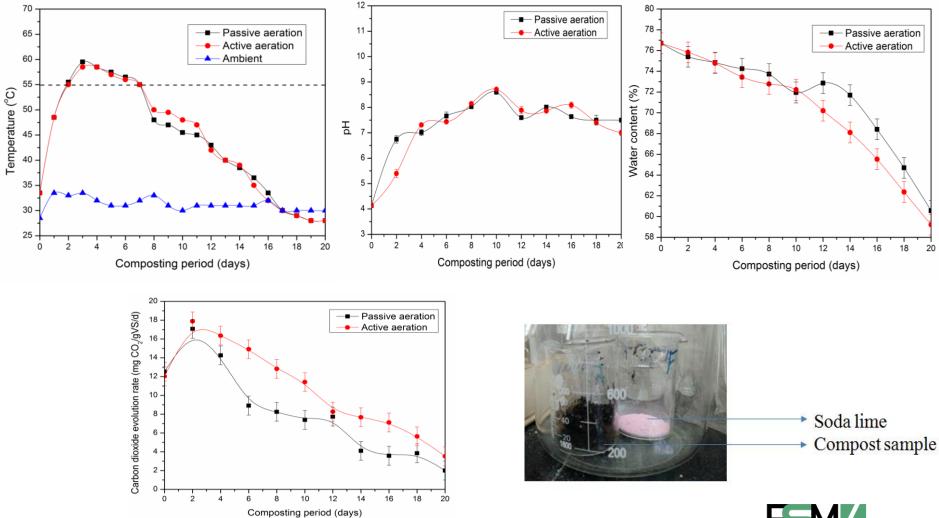
Coir pith >Bagasse> Saw dust>Dry leaves

- Coir pith as bulking material for septage co-composting
- Wood chips- rigid structure and recalcitrant nature FSMA used as structural material

Laboratory scale in-vessel composter

Passive (natural) aeration

Active (forced) aeration


Selection of Feedstock composition

- Fixed based on self-heating test, conducted in Dewar flasks
- Compost mixture with higher temperature (>55°C) & retention (≥3 days) is used

	Substrate	Moisture Content (%)	C/N ratio	Mass used (kg)			
of	Vegetable waste	92.6 ± 1.8	15.6±1.5	11.0			
ics	× Food waste	81.4±2.5	20.4±0.7	2.0			
ristics	E Dewatered septage	60.2±2.7	8.2±0.8	6.5			
ter.	Coir pith Wood chips	33.3±1.2	34.5±2.7	1.0			
racte	Wood chips	55±0.9	40.9±1.8	2.5			
char	Cow dung	94.3±2.2	9.4±0.9	1.0			
С С	Overa	Overall Moisture Content (%)					
		15.7					

Compost Dynamics and Maturity

Compost product quality

	Standard values				SEED ED		
Parameters	HKORC ª	TMECC ^b / CCME ^c	Passive aeration	Active aeration			
Ammoniacal-N (mg/kg dw)	< = 700	75-500	10.3 ±5.3	37.2± 4.8	· · · · · ·		
CO ₂ evolution rate (g C/kg VS/day)	< = 2	2-4	2.0 ± 0.2	3.5 ± 0.2			
C:N ratio	≤ 25	≤ 25	10.9 ± 0.8	9.8 ± 0.5	Seed germination test		
pH Value	5.5 - 8.5		8.2 ± 0.1	7.4 ± 0.1			
Organic matter (% dw)	> 20	>40	61 ± 0.5	58 ± 0.5			
Seed germination index (%)	≥ 80	80–90	135	144	- COM		
Total N, P, K	≥ 4% dw		4.37±0.5	4.5±0.5	Ripened compost		

^aHKORC (2005): Compost and Soil Conditioner Quality Standards for General Agricultural Use. ^bTMECC (2002): Test Methods for the Examination of Composts and Composting. ^cCCME (2005): Guidelines for Grade A Compost Quality.

Lessons learned and Summary

- Septage is highly variable in nature
- Drying beds better sustainable dewatering options
- Co-compositing helps in integrated solid waste management
- Addition of bulking material (having higher water holing capacity) reduces leachate production
- Wood chips provides enough FAS and in turn reduce GHG emissions
- In-vessel co-composting produces good quality compost from solid waste at a faster rate

"Bio-waste to Bio-gold"

Thank you for your kind attention!!!

