SANITIZATION OF FAECAL SLUDGE BY AMMONIA

By Jörgen Fidjeland & Björn Vinnerås
Sanitation crisis

• 1.9 million people die each year of unsafe water, lack of sanitation and poor hygiene
• Avoid transmission of pathogens
• Unsafe disposal:
 • Disease outbreaks
 • Endemic disease
 • Eutrophication

→ Building toilets is not enough!

UN Faecal sludge management at Haiti
Source: http://solutionshaiti.blogspot.se/
Fertilizer potential

- Faecal sludge
 - Organic matter
 - Nitrogen, Phosphorous, Potassium
 - Micronutrients
- Fertilizer potential of faecal sludge compared to mineral fertilizer use:
 - Vietnam: 14 % N, 24 % P
 - Uganda: 1300% N, 1700% P
- Health loss as DALY in low and mid income countries:
 - Unsafe water and sanitation: 3.7 %
 - Mal- and Undernutrition: 15.4 %

→ Need for treatment regarding pathogen content!

Foto: Peter Morgan
Ammonia sanitization

- Inactivating effect of uncharged ammonia
 - Bacteria
 - Viruses
 - Protozoa
 - Helminth eggs, for example Ascaris eggs
- Ammonia source in faecal sludge
 - Urine (intrinsic)
 - Urea (added)

→ *How can this be applied?*

Urea nitrogen fertilizer
Source: www.chimicare.org/
Application of Ammonia Sanitization

• Airtight storage to avoid that the ammonia escapes as gas
 • Storage facility
 • Storage in pit, alternating pits.

• Requirement:
 • Sufficient concentration of ammonia
 • Sufficient treatment time

→ What is sufficient ammonia concentration?
Ammonia concentration

- NH_3 depends on
 - Total ammonia
 - pH
 - Temperature
 → *Simple validation*
- NH_3 in faecal sludge
 - Urine:faeces ratio
 - Flush water
 - Leakage in pit
 - Ventilation in toilet
 → *What is sufficient treatment time?*

\[
\text{NH}_4^+ \rightleftharpoons \text{NH}_3 + \text{H}^+
\]
Treatment time at 28°C

1% Urea → 2% Urea

- Pour-flush latrine
- Vacuum toilet
- UDDT post-toilet mixing

NH₃ concentration [mM]

Organisms:
- Salmonella 6 log10
- Reovirus 3 log10
- Enterococcus 5 log10
- Adenovirus 3 log10
- Ascaris 3 log10
Treatment time - Ascaris

- 1% Urea
 - Pour-flush latrine
- 2% Urea
 - Vacuum toilet
 - UDDT post-toilet mixing

Graph showing NH₃ concentration [mM] over days for different temperatures and urea concentrations.
Recommendations

- Reduce flushwater volumes
- Keep the ammonia
- Add urea if necessary
- Validate
 - Measure ammonia, temperature and pH
- Airtight storage for sufficient time
Double gains

→ Fertilizer product where the nutrients are kept
→ Sanitized material reducing the risk of disease transmission

Foto: Peter Morgan