FLOATING TREATMENT PODS FOR LAKE COMMUNITIES

Irina Chakraborty, Wiley Jennings, Puthea Khon, and Taber Hand

FSM2, Durban, South Africa, Oct 30th 2012

Wetlands Work! Ltd, Phnom Penh, Cambodia
Tonle Sap
Sanitation in Cambodia

- Less than 20% have a toilet
- Difficult terrain due to high groundwater and flooding
Floating villages

- >100,000 live in floating homes with no sanitation
- Villages move throughout the year
- Difficult to access
Water as playground

- Children spend hours each day in the water
Ambient water quality

E. coli/100 ml (log scale)

Inside Akol Outside Akol Kampong Luang
Ambient water quality

REC -1 limit: 200 cfu / 100 ml
REC -2 limit: 2,000 cfu / 100 ml
Objective

Improved ambient water quality, as measured by *E. coli* numbers and diarrheal disease incidence among 0-5 year old children.
The Basic Pod

- Widely used tarpauline
- Water bottles sewn into edge
- Volume of single pod: ~235 L
- ~1 x 1.5 x 0.4 m
The Pod

- Double pod (total vol: 470 L)
- Attached by ropes
Water hyacinth (*Eichhornia crassipes*)

- Well-documented remediation abilities
- Originally from South America, now widespread in tropics
- Fast growing
 - In Pod: mass increased 5-fold over 3 weeks
- Resilient
- Large root surface area for microbiological activity
Pod tests: Method

- Pods were filled with tap water and hyacinth (~3.5 kg)
- No exchange
- Sewage or raw feces added
- *E. coli* measured in water samples
Pod test 1: Sewer water

Pod treatment of 35 L sewage (daily)

E. coli cfu /100 ml (log)

Sewage: $\sim 10^{-5} - 10^6$
Pod test 2: Feces

Pod treatment of 500 g feces

E. coli cfu /100 ml (log)

0 2 4

Time (days)

Differences in smell and appearance of water
Pod tests on lake (Pod x2)

Input Pod: 65,000 cfu/ 100 ml (6.5 x 10^4)
Output Pod: 10,000 cfu/ 100 ml (10^4)

Total expected $E. \ coli$ in Pods from four-person household: 10^8 cfu/ 100 ml
User experience

- Tested with a (floating) research station and a villager’s house
- Challenges:
 - Accurate user feedback
 - Smell
 - Mice
Evolution of design

Key features of design:

- Affordable (current model: $20, including platform)
- Local materials, production
- Low-maintenance
- User-friendly
Evolution of design

• Bucket as a “toilet”
• First pod section covered to address smell
• Indoor or external installation option
Evolution of design

- Strategies to replace tarp
 - Bamboo Pod lined with a waterproof material
 - Stability issues; new proposed design connects section with innertube tires to allow flexibility
- Biodegradable?
- Protect edges of tarp from light (e.g. paint)
Current work: Health impacts

• Adoption of Pods on the village scale
• Two villages: one with Pods, one as control
• Around forty households in one, fifty in the other; similar income levels
• Target: 0-5 year olds
• Simple questionnaire on gastrointestinal symptoms, contact with water
Lake Inle

• March - May 2012
• Connected with Buddhist Youth for Inle Watershed
• Water level changes and household sewage untreated, similar to Cambodia
• Houses are stilted; 70,000 inhabitants
• Different attitude to sanitation
Other future work

• Evaluate effectiveness beyond indicator organisms
• Analyze and respond to user feedback
• Tracer experiments
Other future work

- Adapt Pods for pig waste
Acknowledgements

Bill & Melinda Gates Foundation
Conservation International