Cookie tracking notice
Are we allowed to crumble with cookies and anonymous tracking?

We use cookies on our website. Some of them are essential for the operation of the site (so called session cookies), while others help us to improve this site and the user experience (tracking cookies). We use the application Matomo and the external service etracker to analyze your behavior on our website anonymously. Because we value your privacy, we are here with asking your permission to use the following technologies. You can change your settings any time via this link or the menu item in footer menu. For more information visit our Data Policy

Urine-tricity: Electricity from urine

2011 - 2018 • University of the West of England, Bristol Robotics Laboratory (BRL)

Purpose

To scale down the size and improve the performance of microbial fuel cell (MFC) technology in order to further opportunities to implement this technology to address energy access issues in developing countries

Activities

Phase 3 involves further research into and optimisation of the MFCs in terms of wastewater treatment, electricity generation and other benefits (e.g. pathogen killing and disinfectant production), taking the technology forward towards commercialisation, and setting up field trials in developing country locations where they lack sanitation infrastructure and electricity access. The first field trial is being installed in Uganda. A partnership with Oxfam (since 2016) relates to setting up further trials in refugee camps.

Images

Image: Pilot project in Kisoro, Uganda

Countries of activity

Location of main activity

Objectives

Generating electricity directly from urine, using Microbial Fuel Cells (MFC). MFC is an energy transducer, with live (non-pathogenic) microorganisms that serve as bio-catalyst.

The Objectives under Phase 3 include bringing the MFC technology closer to the market, so it can be commercialised and made available primarily for developing country contexts which lack sanitation infrastructure and electricity access. Continued lab research and field-based trials will underpin demonstrations and optimisation of the various real world applications of the technology.

Further information

The MFC is an energy transducer, with live (non-pathogenic) microorganisms as the bio-catalyst. It consists of two half-cells:- an anode (negative terminal) and a cathode (positive terminal) that are typically materialized in two different chambers. Microbes typically grow on the anode and continue with their normal metabolic processes. In the presence of an electrode and under the pressures of redox potential difference and consequent electrophilic attraction, they interact with the electrode and make it part of their natural anaerobic respiration, i.e. directly or indirectly transfer electrons onto the electrode.

Microorganisms inside the anode of an MFC form a biofilm of fixed thickness, dictated by the ability and rate of electron transfer for respiration. These microorganisms form a stable semi-solid matrix onto the electrode surface, which becomes permanently stuck, robust and resistant, even at high flow rates. New daughter cells or other microbes, which have no access to the electrode, will remain in the anode until being flushed out.

A very important feature of MFCs is the inherent link between electricity generation and waste (sludge or urine) break-down. This means that the higher the energy output levels, the better is the waste compound breakdown and the higher is the production of water at the cathode [2 incoming electrons and 2 protons per single water molecule].

Different approaches can be employed for optimizing the MFC technology to allow scale up for practical applications. In particular, it has been shown that higher energy density levels and optimum biofilm/electrode surface area–to–volume ratios reside within smaller scale MFCs, so this is the direction the project is moving in.

Contact information

Gill Davies
Login to see the e-mail-adress of the contact person.

Filter tags

Bill & Melinda Gates Foundation Europe & Central Asia Fundamental research and engineering Product design and engineering Renewable energies and climate change Resource recovery Sub-Saharan Africa

Links


Uploaded by:
Trevor Surridge (tmsinnovation)

Share this page on    


Follow us on    

SuSanA Partners  currently 400 partners

Show all partners »

Networks Circle

 

Latest SuSanA Blog Articles

  • 26-03-2024Alice Brandt ,Mascha Kaddori:
    Let’s get wild: Water, sanitation and hygiene at the human-wildlife interface »
  • 21-03-2024Tabeer Riaz:
    Empowering Young Women Water Professionals in South Asia: Leading the Wave of Change »
  • 12-03-2024Beauty Mkoba:
    Unlocking the potential of African Women in STEM through mentorship »
  • 08-03-2024Gloria Mariga :
    Mentorship empowers African women to lead environmental stewardship »
  • 05-03-2024Josphine Gaicugi:
    Achieving access to adequate and equitable sanitation for all is no mean feat »
  • 01-02-2024Sanitation for Millions:
    Toilets Making the Grade® school competition – A Competition where all Participants are Winners »
  • 24-01-2024Anne Fetscher,Jörg Felmeden:
    The sustainable use of tap water (in Germany) and the power of education. An Interview with Dr.-Ing. Jörg Felmeden »

SuSanA Blog »

SuSanA newsletter

Stay informed about the activities of SuSanA and its partners. The SuSanA newsletter is sent out around four times per year. It contains information about news, events, new partners, projects, discussions and publications of the SuSanA network.

Subscribe to newsletter »

 


close  

 

Resources and publications

Our library has more than 3,000 publications, factsheets, presentations, drawings etc. from many different organisations. It continues to grow thanks to the contributions from our partners.

Add item to library »

The three links below take you to special groups of items in the library for more convenient access:

Projects

The project database contains nearly 400 sanitation projects of many different organizations dealing with research, implementation, advocacy, capacity development etc. Advanced filtering functions and a global map are also available. Information on how and why this database was created is here.

People working for SuSanA partners can add their own projects through their partner profile page. You might need your SuSanA login upgraded for this purpose. Please contact us if you would like to add a project.


Trainings, conference and events materials

Missed important conferences or courses? Catch up by using their materials for self study. These materials have been kindly provided by SuSanA partners.

Shit flow diagrams, excreta flow diagrams (298 SFDs worldwide)

Shit flow diagrams (SFDs) help to visualize excreta management in urban settings. Access SFDs and more through the SFD Portal.

Emersan eCompendium

Humanitarian Sanitation Hub

Sanitation Workers Knowledge and Learning Hub

 


close  

 

Discussion forum

Share knowledge, exchange experiences, discuss challenges, make announcements, ask questions and more. Hint: Your discussion forum login is the same as your SuSanA login. More about the forum's philosophy »


Integrated content

We are hosting content from some other communities of practice and information-sharing portals. This section also provides a link to SuSanA's Sanitation Wikipedia initiative.

Suggest content to add »

SuSanA partners

Not yet a SuSanA partner? Show your organisation's support to SuSanA's vision and engage in  knowledge sharing by becoming partners.

Apply to become a partner »


Individual membership

Register as an individual member of SuSanA free of charge. As a member you can interact with thousands of sanitation enthusiasts on the discussion forum.  You can also get engaged in one of our 13 working groups and our regional chapters. Our FAQs explain the benefits further.

By getting a SuSanA login you can fully participate in the SuSanA community!

Register as a member

Login


Forgot your password?
Forgot your username?

 


close