

Co-treatment of Septage with Municipal Wastewater in Medium Sized Cities in Vietnam

David Robbins

Sher Singh PE, Ross Kearton

SCE Aménagement & Environnement *for* Cities Development Initiative for Asia

Background – Can Tho, Vietnam

- > 1,240,000 inhabitants
- > 205,000 households
- 1 m3 of septage per household per year
- 17,000 m3 / month (566 m3/day)
- Actual amount collected:
 200 m3 / month

Vietnam Wastewater and Septage Régulations

Decree 80/2014/ND-CP

- Collection of fees for waste sludge management
- Requires characterization of waste sludge
- Sludge shall be brought to location of wastewater treatment plants, if no other licensed facility is available

Table 1: QCVN 14: 2008 -- National TechnicalRegulations on Domestic Wastewater

No.	Parameter	Unit	Α	В
1	рН		5 - 9	5 - 9
2	BOD5 (20 [°] C)	mg/L	<mark>30</mark>	<mark>50</mark>
3	Total suspended solids (TSS)	mg/L	50	100
4	Total dissolved solids	mg/L	500	1000
5	Sulfide (as H ₂ S)	mg/L	1.0	4.0
6	Ammonium (as N)	mg/L	5	10
7	Nitrate (NO ₃ -)	mg/L	30	50
8	Animal fat and vegetable	mg/L	10	20
	grease			
9	Total surface-active	mg/L	5	10
	substances			
10	Phosphate (PO ₄ ³⁻)	mg/L	<mark>6</mark>	<mark>10</mark>
11	Total coliforms	MPN/ 100mL	3.000	5.000

A is for wastewater discharged into a water body used for the purpose of domestic water supply. B is for a water body not used for domestic water supply

Co-treatment system for Can Tho - 17,000 m³ / day

Septage discharge stations

One proposal for septage collection and discharge to the WWTP

Estimating impacts of co-treatment

(% septage x constituent septage concentration) + (% sewage x constituent sewage concentration) = combined influent concentration of the constituent

 (100% - % constituent reduction) x (combined influent constituent concentration) = effluent concentration of constituent

• Compare effluent concentration to GoV QCVN 14: 2008 -- National Technical Regulations on Domestic Wastewater.

Table 2: Hanoi Septage Characteristics

		Measured (mg/L)			
Parameter	Abbreviation	Max	Min	Average	Reference
Biological Oxygen Demand	BOD ₅	22,400	12,000	16,033	
Chemical Oxygen Demand	COD	83,830	2,830	30,526	M. Bassan, H. Harada, L.
Suspended Solids	SS	71,077	1,380	21,173	Strande, N. Viet
Ammonium Nitrogen	NH ₄ -N	1,670	50	390	Ann, and V. I. Hoar An
Total Nitrogen	T-N	1,670	180	1,285	
Total Phosphorus	T-P	2,490	30	202	

Table 3: Hanoi WWTP Influent Concentrations*

	Influent Concentrations (mg/L)							
			Bac Thang					
	Kim Lien	Truc Bach	Long	Yen So	Median			
BOD ₅	115	135	85	45	100			
COD	145	155	135	132	140			
TSS	85	85	65	51	75			
NH ₄ -N	18			28	23			
T-N	40	34	38	34	36			
T-P	6.5	6.5	5.4	7.2	6.5			

* Source: Figure 11 in Sandec/Eawag SFD Promotion Initiative Hanoi Vietnam (2016).

Table 4: Hanoi Yen So SBR WWTP % Removal

	Influent	Effluent	
	mg,	/L	% Removal*
BOD ₅	45	6	87%
COD	132	24	82%
TSS	51	10	80%
NH ₄ -N	28	0.5	98%
T-N	34	8	76%
Т-Р	7.2	6.5	10%

% removal = (influent – effluent) / influent

Table 5: Estimated WWTP Effluent Concentrations with 1% Septage

	Constituent Concentration (mg/L)					
	% % Combin		Combin	Yen So	Effluent	
	Septage Influent e		ed	WWTP	Concentration	
parame						
ter	1%	99%	100%	Reduction	mg/L	
BOD ₅	160	99	259	87%	34	
COD	305	139	444	82%	80	
SS	212	74	286	80%	57	
NH ₄ -N	3.9	22.8	26.7	98%	1	
TN	13	36	48	76%	12	
ТР	2.0	6.4	8.5	10%	8	

Combined influent concentration =

(% septage x constituent septage concentration) + (% sewage x constituent influent concentration)

Table 6: Comparison of Results to RequiredDischarge Standards at 1% septage

	Effluent Concentration (mg/L)	GoV Standard (mg/L)		
parameter	1% septage	Class A Class B		
BOD ₅	34	30	50	
COD	80			
SS	57	50 100		
NH ₄ -N	1	5	10	
TN	12			
ТР	8	6 10		

Fails for class A effluent: BOD, SS and TP

Table 7: Septic Tank Effluent (mg/L)

Septic Tank Liquid and Solid Layers

Parameter	Minimum	Average	Maximum
BOD	60	259	920
COD	91	413	1780
SS	12	134	733
T-N	1.3	38	349
T-P	0.9	9.5	72.4

Reference: Hidenori Harada, Pham Nguyet Anh, Nguyen Viet Anh, Shigeo Fujii (2015). Desludging Effect on the Performance of Septic Tanks in Hanoi. Hanoi, 2015. Data is for 36 septic tanks.

Table 8: Estimated WWTP Effluent with 5% of Septage effluent after sedimentation

Paramete	Septage	WWTP	Combined	Removal	Estimated	GoV Class
r	Effluent	Influent	Influent	Efficiency	Effluent	Α
BOD	259	100	108	87%	14	30
COD	413	140	154	82%	28	
SS	134	75	78	80%	16	50
T-N	38	36	36	76%	9	
T-P	9.5	6.5	7	10%	6	6

Proposed septage receiving station

- Easy connection for trucks
- Coarse screening
- Sedimentation. *Grit* and inorganic solids removal in tank
- Pumps liquids to existing treatment plant headworks, and solids to solids processing unit
- Good for up to 2% of WWTP capacity, then mechanical dewatering

Phase 1 – Septage receiving with screening only

Conclusions

- Plant scale testing should start by adding only the liquid fraction of the settled septage.
- Start at 2% and work upward to about 5% monitoring the WWTP effluent concentrations for parameters specified in the GoV regulation
- Pay special attention to nutrients as potential limiting factors.
- Mechanical dewatering will likely be required when septage volume exceeds 2%

Thank you!

Dave Robbins <u>dmrobbins10@gmail.com</u>