

Faecal Sludge Treatment and Reuse in Emergencies: A Case Study from Mahalaxmi Municipality, Nepal

Presenting Authors
Reetu Rajbhandari
Bipin Dangol
Rajendra Shrestha

Environment and Public Health Organization (ENPHO)

Partner organizations

Overview of the Presentation

- Background
- Flow Diagram with capacity of each component
- Present Status
- Laboratory Analysis Report
- Performance of Treatment Plant
- Lesson Learnt
- Challenges
- Way Forward

Background

Devastating earthquake in April 2015 in Nepal

People residing in campsites

Construction of temporary toilets in campsites

Faecal sludge reuse complex

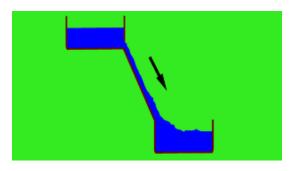
Construction of treatment plant

Overflowing toilets in campsites

Background

Financial support

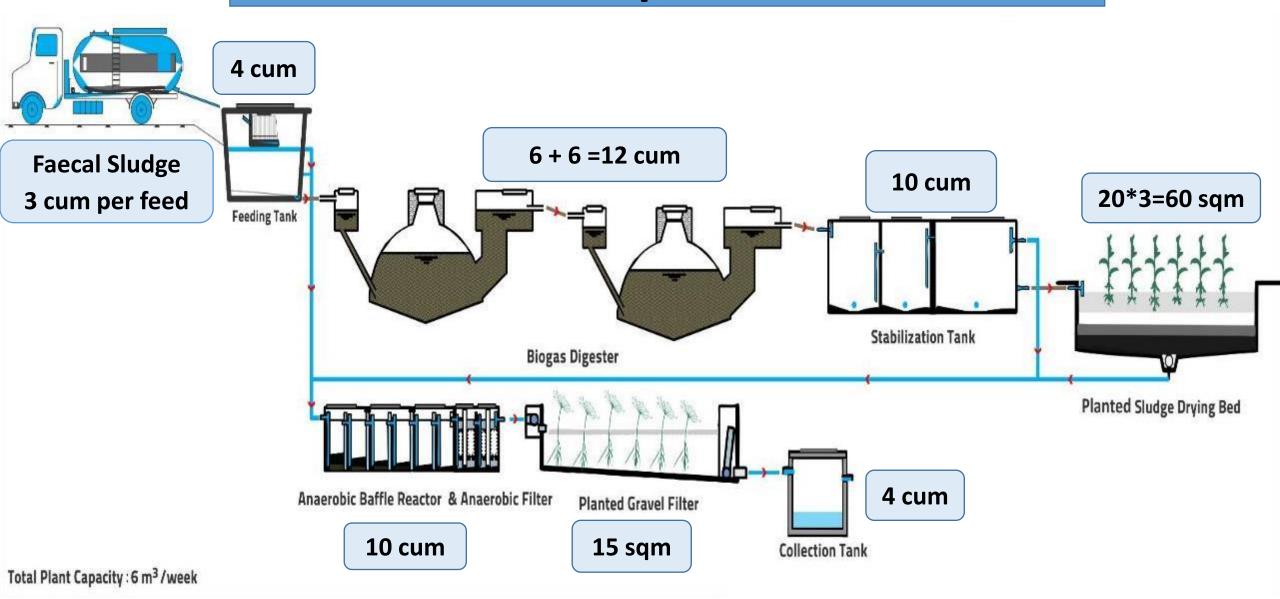
Land area (300m²) provided by: Saligram Orphanage


Technical support: ENPHO and CDD Society

Construction Cost and Prefabricated Component's Cost = USD 70,600

Designed treatment capacity 6 m³/week

Gravity based system



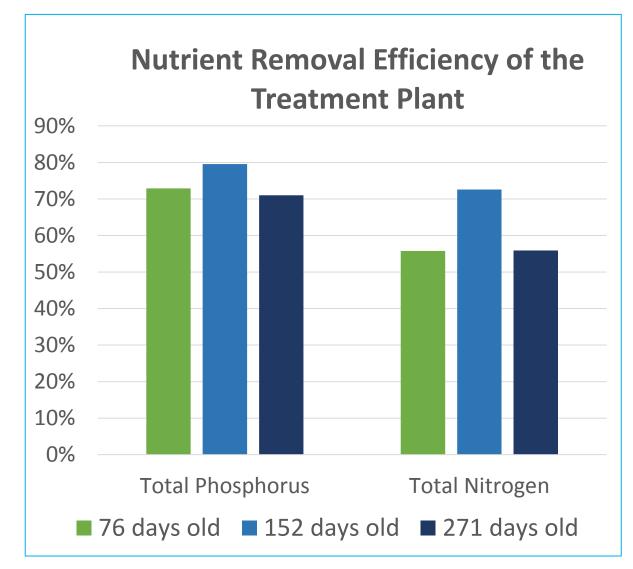
No skilled labor required for day to day operation

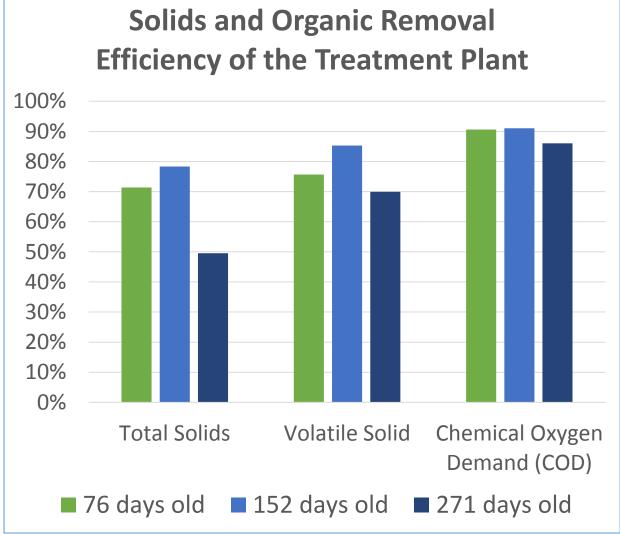
Flow Diagram with Capacity of each Component

Present Status (327 days of operation)

Volume of treated water generation: 4m³/week

Laboratory Analysis Result




		After 76 days of operation Pre- Monsoon			After 152 days of operation			After 271 days of operation		
					Monsoon			Post-Monsoon		
			PGF	Removal		PGF	Removal		PGF	Removal
Parameters	Unit	FT	outlet	(%)	FT	outlet	(%)	FT	outlet	(%)
рН	-	7.9	8.1	NA	7.3	7.5	NA	7.5	8	NA
Electrical conductivity	μS/cm	11840	5280	55.41%	8370	2590	69.06%	5620	4410	21.53%
Total Solids	mg/L	5554	1590	71.37%	4911	1064	78.33%	4997	2522	49.53%
Volatile Solids	mg/L	2206	536	75.70%	2172	319	85.31%	2154	648	69.92%
Total Alkanity as CaCO3	mg/L	4390	2615	40.43%	3730	319	91.45%	3040	2240	26.32%
Nitrogen-Ammonia	mg/L	1240	572	53.87%	896	264	70.54%	770	450	41.56%
Nitrate	mg/L	0	0	NA	5.2	0.5	90.38%	4.9	ND(<0.2)	96.00%
Total Phosphorus	mg/L	107	29	72.90%	93	19	79.57%	30	8.7	71.00%
Total Nitrogen	mg/L	1384	612	55.78%	1003	275	72.58%	1370	604	55.91%
Total Kjeldahl Nitrogen (TKN)	mg/L	1384	612	55.78%	1002	274	72.65%	1369	604	55.88%
Organic Dry Matter	mg/L	2206	536	75.70%	2172	319	85.31%	2154	648	69.92%
Chemical Oxygen Demand										
(COD)	mg/L	5244	492	90.62%	3120	280	91.03%	5563	775	86.07%
Potassium (K)	mg/L	299	200	33.11%	407	141	65.36%	113	190	-68.14%
Helminths	Present/Absent	Absent	Absent	-	Absent	Absent	-	Present	Absent	-
E.coli	CFU/mL	TNTC	TNTC	-	TNTC	TNTC	-	TNTC	TNTC	-
*FT= Feeding Tank	*CFU= Colony Forming Unit				*NA= Not Applicable					
*PGF= Planted Gravel Filter	*TNTC=Too Numerous To Count				*ND= Not Detected					

Performance of Treatment Plant

Challenges

- High septic tank emptying demand
- Limited design capacity of treatment plant
- Social acceptance
- Low awareness in FS workers (desludging service providers) on health safety

Lesson Learnt

- Need-based placement
 - Community support
 - Political support
 - Private operator's support (honey sucker's role)
 - Optimum use of endproducts
- Minimize and simplify operational works

Way Forward

- Continue on-job training on O&M
- Business plan for sustainability
- Handover of FSTP to local NGO by March, 2018
- Monitoring and research
- Evidence-based advocacy on FSM
- Explore possible replication of the system

Thank you for your attention!