olive energies

Biomass Steam Processing (BSP)

Conversion of Biomass to Coal by Steam Conditioning

Dr. George Francis Presented by Thomas Hoffmann - BORDA

Play a constructive role in the bio-economy by:

- Generating "new" industrial and bio-energy feedstocks
- Non-conventional activity areas
- Production from wasteland or underutilized land
- Use of by-products as resources

Multicultural projects:

- Conception
- Financing
- Consortium building
- Management of Implementation

Live Energies and its Partners

21.02.2017

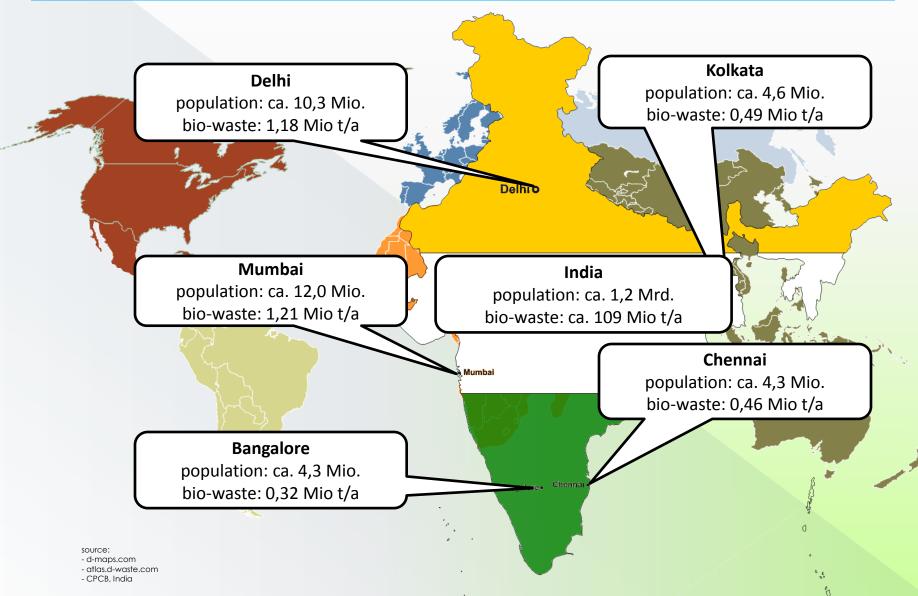
World-wide project experiences

- Biomass production from wasteland in Asia and Africa
- Expertise in evaluation and research in energy crops
 - Jatropha, Cassava, Opuntia, Euphorbia tirucalli
 - Product and by-product use strategies
- Wastes as a source of carbon enriched products
 - Biomass Steam Processing

Biocoal from organic wastes – BSP project

- Partners:
 - EnBW Energie Baden-Würrttemberg AG, Germany (EnBW)
 - Karlsruhe Institute of Technology, Germany (KIT)
 - Live Energies GmbH, Germany (LE)
- The BSP process was invented at KIT (Prof. H. Bockhorn/ J. Steinbrueck) in a joint research project with EnBW. The process has been awarded a EU patent in 2016
- LE has been contracted by EnBW to establish a demonstration BSP plant
- The following slides show details on the relevance of BSP:
 - Bio-waste and issues
 - Biomass Steam Processing
 - Project

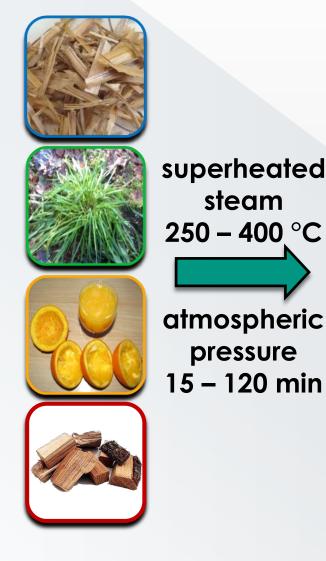
Bio-waste suitable for BSP



- Organic waste, mainly of vegetable origin
- Sources:
 - households, restaurants, markets, agriculture, food industries...

Bio-waste generation in India

Challenges


- Huge and increasing urban bio-waste and sewage generation
- Disposal currently in empty lands in urban suburbs
- Problems:
 - lack of space
 - health risks, environmental issues, bad odour

Biomass Steam Processing

product:

- coal character ↑
- carbon fraction/-density ↑
- heating value ↑
- biological activity ↓
- homogenous, odorless, hydrophobic

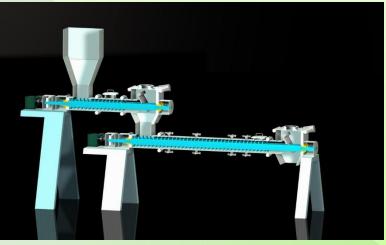
advantages:

- transport costs ↓
- storability ↑
- range of applications ↑
 - incineration, gasification
 - activated carbon
 - fertilizer
 - CO₂-sink

 Plant development from laboratory scale to pilot scale at KIT

lab reactor up to 5 g Batch - Discontinuous small pilot reactor up to 500 g/h Semi - continuous pilot plant up to 50 kg/h continuous BSP can handle varied biomass

- Wide range of biomass inputs tested
- BSP imitates natural coalification but 3,5 x 10¹¹ times faster


sample	temperature [°C]	HHV _{DM} [MJ/kg]	CR [%]	
wood pellets	300	22,04	72,9	
wood pellets	350	28,60	40,8	
straw	300	21,45	47,9	
straw	350	21,15	40,2	A REAL PROPERTY
leaves	300	19,76	66,4	F.M. at
leaves	350	21,01	56,5	A Star
orange peels	300	24,24	56,3	
bio-waste	325	25,79	53,1	

BSP pilot plant tested with sewage – biowaste mixtures

 Successful drying of the input and increase in HHV obtained

sample	dm [%]	HHV _(as is) [MJ/kg]
sewage sludge	25	3.0
wood pellets	95	16.9
bio waste	10	2.2
coal _{sludge+pellets}	98	20.7
coal _{sludge+bio waste}	98	14.4

06.03.2017

Process comparison

BSP combines pyrolysis and HTC

	Slow Pyrolysis (SP)	Biomass Steam Processing (BSP)	Hydrothermal Carbonisation (HTC)		
medium	inert gas (N ₂)	superheated steam	pressurised water		
temperature	300 – 500 °C	250 – 350 °C	180 – 250 °C		
reaction time	long (t > 8 h)	short (t < 2 h)	long (t > 8 h)		
pressure	increased (p > 1 bar)	atmospheric	high (p > 12 bar)		
processing	continuous	continuous	semi-continuous		
thermal					

- BSP Advantages:
 - short reaction times, atmospheric pressure, continuous process, high moisture input, dry product

Demostration project and timeline

o 2017/18

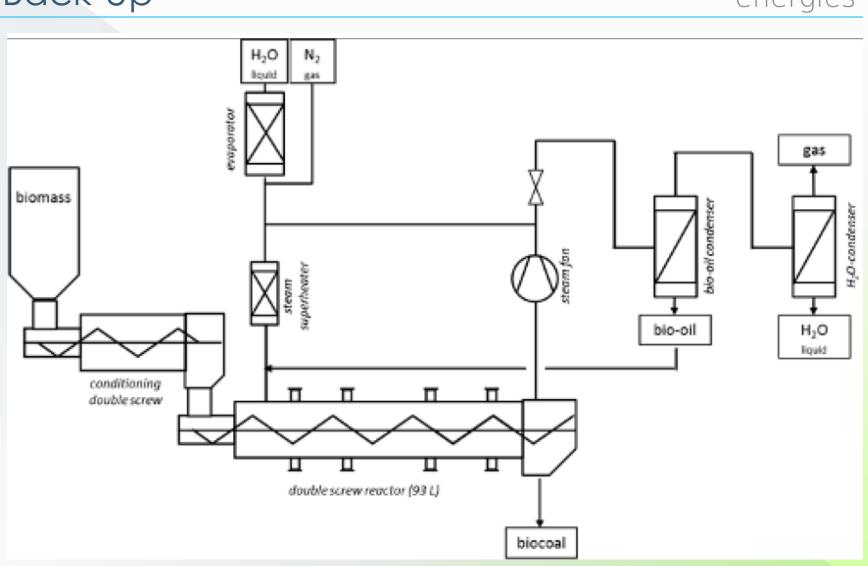
- Establishment of a demonstration plant with 2000 t/y throughput capacity in Germany
- Site: waste treatment/ composting site
- Raw material: mixed gardening, landscaping and household wastes

o **2018/19**

- Establishment of a plant with 2.000 t/y at a suitable site in India, subsequent upscaling to 20.000 t/y
- Targeted raw material:
 - vegetable market wastes
 - sewage sludge

- Availability of the required quantity of wastes on site
- Recognition of the fact that wastes present an environmental and health problem due to
 - Very low energy content
 - Bulk, high moisture content
 - High degradability, disposal problems in cities
 - Their disposal requires usually more energy than they contain
- Suitable valorisation of the intake of such wastes
- Marketability of the disposal products

Olive energies


Contact:

Live Energies GmbH

Scharnhauser Strasse 35 D-70599 Stuttgart, Germany +49 711 94542744, office@liveenergies.de

Live Energies Agro Services

Private Limited, Chennai

Back-Up

