

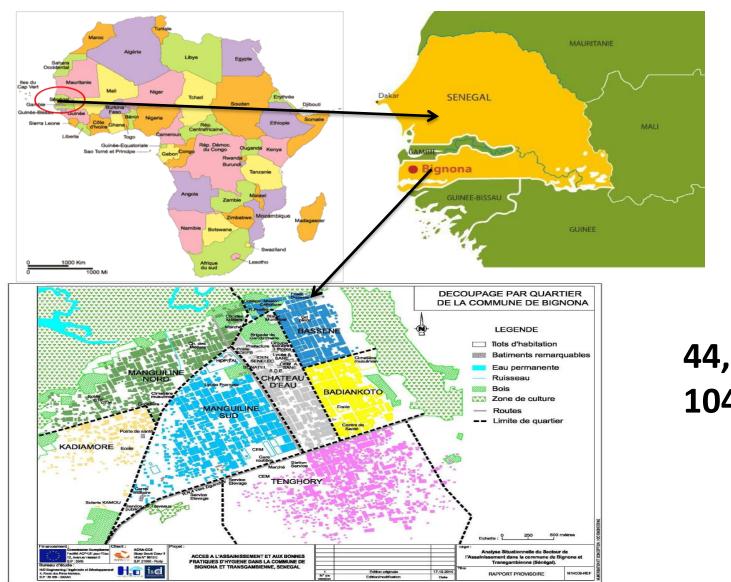
Tools for faecal sludge management planning in small towns:

case study of Bignona, Senegal

Elhadji Mamadou Sonko

Linda Strande, Lars Schoebitz, Juliette Ndounla, Seydou Guinko

Institute of Environmental Sciences, University of Dakar, Senegal



Background context

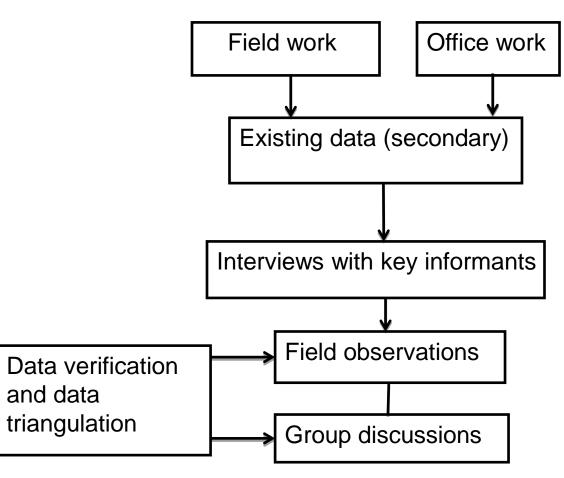
- In Senegal, the rate of access to improved sanitation systems is low in rural areas.
- ❖ 36.6% against 62.4% in urban areas, in 2013 (PEPAM, 2015).
- In order to address this situation the Government is implementing a new program for Rural Sanitation.
- Program is based on market approach than assistance approach.
- This approach is facilitating the intervention of NGO as ACRACCS in Bignona.
- But this requires a good knowledge of the sanitation situation.
- That's the purpose of these studies carried out by EAWAG / Sandec.

Site of the study

Method/approach/principles

Market Driven Approach

www.sandec.ch/fsm_tools


8 steps

- 1. Preparation of the study
- 2. Market analysis
- 3. Market players analysis
- 4. Market sizing
- 5. Adjustment factor
- 6. Market growth
- 8. Market attractiveness
- Market strategies (Schoebitz et al.
 2016)

Method/approach/principles

Shit Flow Diagram

http://www.susana.org/en/resources/library/details/2211

Results

MDA: Market Driven Approach

> SFD: Shit Flow Diagram

By-products and their substituted products

Sub-products	Substituted products	Application marketing / industrial
Soil amendments (compost, digestat)	Manure, peanut shells	Agriculture
Fertilizers	Chemical fertilizers (urea, NPK)	Agriculture
Forage plants (plants from planted beds)	Peanut leaves	Livestock
Solid fuels (pellets, briquettes)	Coal, wood, peanut shells	Combustion Energy, cooking
Liquid fuel (biogas)	Gas cylinder (Butane gas)	Cooking, Home lighting
Protein	Food for livestock , fish and poultry	Livestock, aquaculture
Treatment effluent	Water	Gardening
Electricity	Electricity	Home lighting
Fish	Fish	Human consumption

Some examples of substitute products

Manure Peanut shells Charcoal

Peanut leaves

Gas cylinder

Market size and volume

Substituted products	Market size /year	Market volume (CFA) /year	
Peanut leaves	127 tonnes	18.193 millions	
Peanut shells	55 tonnes	137 500	
Chemical fertilizers	230.25 tonnes	49.31 millions	
Charcoal	80 tonnes	2.56 millions	
Food for livestock and poultry	250 tonnes	340 millions	
Gas cylinder	42.000 cylinder	145.6 millions	
Manure	85 tonnes	280 000	
Electricity	20 megawatt	1.608 billion	
Fish	1,750 tonnes	360 millions	
Water		0	
2/6/2017			

What by-product is adapted to the context of Bignona? (1/2)

Sub-products	Forces	Weaknesses	Opportunities	Threat
Biogas	✓ Strong demand ✓ No local producers ✓ Social acceptance	✓ Technical parameters✓ Composition	✓ Replaces coal and wood ✓ Collaborate with the supplier from Ziguinchor	✓ Quantity of sludge collected ✓ Cost
Electricity	✓ Social acceptance✓ May interest Tenghory	✓ Investment and operating cost	✓ Could be sold to Senelec	✓ Quantity of sludge available
Compost	✓ Strong demand	√Cost	✓ Co- composting ✓ Cost of chemical fertilizer	✓ Low cost of manure ✓ Quantity of sludge collected

What by-product is adapted to the context of Bignona? (2/2)

Sub-products	Forces	Weaknesses	Opportunities	Threat
Fodder plants	✓ Livestock area ✓ Tropical climate	✓ Sludge characteristics ✓ Sanitary standards	✓Increasing number of animals	✓ Production capacity
Treatment effluent	✓ Gardening in the locality	✓ Quantity and characteristic	✓Strong vegetable consumption	✓ Social acceptance
Solid Fuels	✓ Replace coal	✓ Few industries	✓SONACOS	✓Cost

Classification of by-products in ascending order of interest

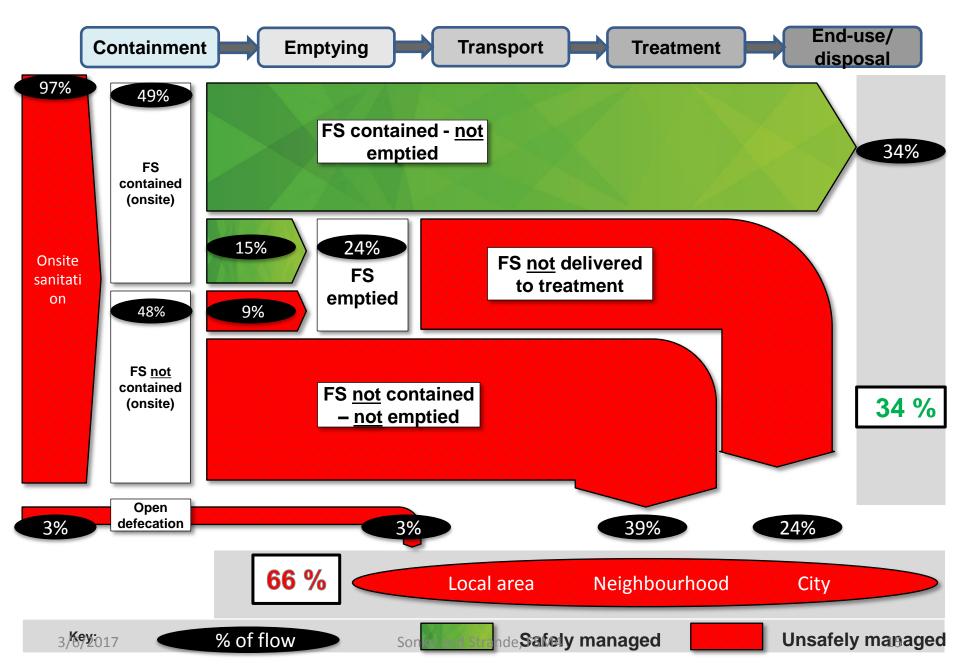
- 1. Forage
- 2. Aquaculture
- 3. Soil amendment
- 4. Fertilizers
- 5. Biogas
- 6. Electricity
- 7. Animal proteins
- 8. Solid Fuel
- 9. Processed water
- 10. Building Materials
- 11. Soil amendment (untreated raw sludge)

What the MDA brought?

Facilitated the communication with all stakeholders.

Helped to have the commitment of all the actors.

❖ Facilitated the choice of the most appropriate treatment technology.


Shown the business that can be created around the FSM.

Results

MDA: Market Driven Approach

> SFD: Shit Flow Diagram

Desk based assessment

What the SFD brought?

❖ A better understanding of sanitation in Bignona.

Shows where to act to reverse the trend.

❖ Helped in the advocacy to engage local authorities and state services to act.

Difficulties to develop such studies in small towns

- Market dominated by informal
- No archives
- Difficult access to producers
- Lack of previous studies in the locality
- No laboratory equipped for analysis
- Disparity of data according to actors
- Mistrust of local populations

Thank you for your kind attention!