

Rheological, viscoelastic and plastic properties of faecal sludge from VIP latrines

Septien Stringel, S. Teba, L., Pocock, J., Velkushanova, K., Buckley, C.A.

Pollution Research Group, University of Kwa-Zulu Natal, Howard College, 4041 Durban

Motivation of the study

- VIP latrines widespread worldwide, particularly in the African context
- Faecal sludge an hazardous material
- Lack of data in literature about mechanical properties of faecal sludge
- Required for the design of pit emptying, mechanical handling and process equipment

Location of the study

30,000 VIP latrines

Methodology

Sampling

Diagram of a VIP latrine showing the layers from which the samples were selected in the front and back sections

Rheometer:

- Static tests (flow)
- Dynamic tests (viscoelasticity)

<u>Cone</u>

penetrometer:

- Liquid limit
- Plastic limit

Moisture and ash content analysis

Methodology

Alteration of moisture content

- Addition of water to increase moisture content
- Mixing with dried sludge to lower moisture content

Rheometer:

- Static tests (flow)
- Dynamic tests (viscoelasticity)

Modelling

Power Law

$$\tau = K \cdot \dot{\gamma}^n \qquad \begin{cases} K = a \cdot MC^b \\ n = c \cdot MC^d \end{cases}$$

Application for pit emptying

$$\Delta P = \frac{4 \cdot \rho \cdot f \cdot L \cdot V^2}{2 \cdot D}$$

$$F = \frac{16}{Re'}$$

$$Re' = \frac{VD\rho}{K} \left(\frac{4n}{1+3n}\right)^n \left(\frac{D}{8V}\right)^{n-1}$$

$$V = \frac{Q}{\pi \cdot \left(\frac{D}{2}\right)^2}$$

 τ : shear stress [Pa] $\dot{\gamma}$: shear rate [s⁻¹] n : flow behaviour index [-] K : consistency coefficient

V: average velocity $[m \cdot s^{-1}]$ D : pipe diameter [m]L : pipe length [m] ρ_m : sludge density $[kg \cdot m^{-3}]$ f: friction factor [-] Re': power law modified Reynolds number [-] ΔP : total frictional pressure drop in the pipe [Pa]

Composition sludge

~ 80% moisture, except for section 8, pit 1 (~ 65%)

~ 35 % ash

Viscosity - comparison between pit

sections

Section 8: not possible to perform analysis (no flow possible)

Viscosity - comparison between pit

sections

SHEAR THINNING BEHAVIOUR NO EFFECT OF PIT SECTION

Viscosity - comparison between pits

SAME BEHAVIOUR FOR DIFFERENT PITS

Viscoelastic properties

Viscoelastic properties

Viscoelastic properties

Damping factor = Loss modulus / Storage modulus < 1

ELASTICITY > VISCOCITY YIELD STRESS FOR FLOW (~1 – 20 Pa)

Effect of moisture content of sludge

DECREASE OF MOISTURE CONTENT → DECREASE OF VISCOCITY

Effect of moisture content of sludge

Damping factor for different moisture contents < 1

DECREASE OF MOISTURE CONTENT → INCREASE DAMPING FACTOR → DECREASE OF YIELD STRESS (< 1 Pa)

Modelling

Power Law

$$\tau = K \cdot \dot{\gamma}^n \qquad \begin{cases} K = 1.9 \times 10^{51} \cdot MC^{-25.7} \\ n = 3.2 \times 10^{-4} \cdot MC^{1.6} \end{cases}$$

Different from fresh faeces (Wolley et al. (2014))

Average deviation of 13 and 5% for K and n, respectively

Maximum deviation of 37 and 9% for K and n, respectively

Pumping requirements

INCREASE OF PUMPABILITY → INCREASE OF MOISTURE CONTENT → INCREASE OF PIPE DIAMETER

Pumping requirements

Omni-Ingestor criteria:

- Pit emptying rate = 3 l/s
- Pipe horizontal length = 100 m ; vertical length = 20 m

	Pipe diameter	Moisture %			
	(m)	75	80	85	90
Hydraulic	0.2	924-2537	180 -479	52-115	27-42
head (m)	0.3	298-714	65 -133	28-41	22-24
Pressure	0.2	125-344	24-65	7.1-16	3.7-5.7
(bar)	0.3	40-97	8.8-18	3.8-6.0	2.9-3.3
Power (kW)	0.2	38-104	7.4-20	2.1-4.7	1.1-1.7
	0.3	12-29	2.7-5.5	1.2-1.7	0.9-1.0

Plasticity and extrusion

Conclusion about VIP faecal sludge

- Shear thinning fluid
- \Box Elastic behaviour at rest \rightarrow yield stress
- Similar rheological behaviour within the pit and among different latrines
- Low plasticity of sludge, so need to add a plasticiser (example: sawdust) or dewatering for extrusion
- ❑ Addition of water leading to the reduction of viscosity and yield stress → significant increase of pumpability

However: Addition of water not suitable depending on the upstream process (extrusion, drying)

Let's evolve to a safer pit emptying!

Thanks a lot!

septiens@ukzn.ac.za

