

A Neighborhood Fecal Sludge Treatment System Using Supercritical Water Oxidation Marc Deshusses

Kathy Jooss*, Kurabachew S. Duba*, Sherif H.N. Elsayed*, Florencia M. Yedro*, Allen Busick**, and William Jacoby** ***Duke University, **University of Missouri**

"INSTITUTIONAL" OPEN DEFECATION

Untreated sludge ends in the environment (Dhaka, Bangladesh)

Our Vision: Omni Processor for Fecal Waste

Sanitation for the urban poor using supercritical water oxidation (SCWO)

In supercritical water, organics are rapidly oxidized (in seconds) resulting in heat, and CO₂

Benefits

- Very fast reaction (sec.)
- High conversion to CO_2 + clean water
- \circ No SOx, NOx or odor
- No need to dry waste
- Can co-treat haz. wastes

Technical risks

- Corrosion
- o Salts deposition/plugging

Pilot unit at Duke: 1000 p/d

System Characteristics

Basic characteristics

- 100-150 kg dry/day
- 1-2 m³/day
- Feed ~7-20% solids
- Reactor ID: 19 mm
- Reactor length: 4.0 m
- Heat exchanger: 39 m
- Reaction time = 2.5 to 4.5 s
 Continuous operation with

Anti corrosion and plugging measures

- High Re number, slight down slope
- Minimize transition zones
- Stainless steel and special alloys
- Continuous operation with periodic maintenance

<u>Other</u>

- Startup with isopropyl alcohol (IPA) but any other liquid fuel will work
- Air is used as oxidant

Pilot unit construction

Process flowsheet

Waste Processed

Secondary sludge Dry solids-content ~16% Ash content: 20-24% HHV: 15 MJ/kg_{dry} **Dog feces** Dry solids-content 20-30% Ash content: 27% HHV: 15.7 MJ/kg_{dry}

- Used as surrogates for human fecal waste (diluted to 4-10% solids)
- Mixed with IPA because of pumping issues

Secondary Sludge Treatment

Biosolids (14 MJ/kg dry)

Feed

Slurry feed: 4.3% biosolids 9% IPA

Effluent

Effluent After settling

Temperatures During a Typical Run

Time

Secondary Sludge Treatment Summary

Analysis	Influent	Effluent Removal (%)
	(3% sludge + 9% IPA)	Steady State
COD (mg/L)	214,000	70 → 99.97
Total N (mg/L)	10,875	200 → 98.12
NH ₃ (mg/L)	443	17.6
NO ₃ ⁻ (mg/L)	183	15.9
NO ₂ ⁻ (mg/L)	14.9	0.4
PO ₄ ⁻³ (mg/L)	4930	67.9 → 98.60
рН	6.8	7.02
Conductivity (µS/cm)	2560	659

Dog Feces Treatment

Feed The CLENTS STEW SAMPLI SAMPLI

10% solids + 4% IPA

Effluent

Slurry feed pre-processing: 14% solids (15.7 MJ/kg dry)

Fresh Dog Feces Treatment Summary

Analysis	Influent (10% feces + 4% IPA)	Effluent Removal (%) Steady State	
COD (mg/L)	192,000	65-280 → 99.97-99.85	
Total N (mg/L)	4704	220-420 → 95.32-91.70	
NH ₃ (mg/L)	627	185-325	
NO ₃ ⁻ (mg/L)	98	0.3-0.8	
NO ₂ ⁻ (mg/L)	22.5	0.04-0.54	
PO ₄ ⁻³ (mg/L)	14,500	13.4-63.9 → 99.91-99.56	
рН	5.95	-	
Conductivity (µS/cm)	4500	-	

Fate of Metals and Other Elements Dog Feces Run

					Influent	Effluent
Element	Conc. dry feces (mg/kg dry)	Conc. liquid feed (mg/L)	Conc. liq. effluent (mg/L)	Conc. dry ashes (g/kg dry)		
Са	75,400	2,932	27.50	298	Th	1
S	6,180	240	49.70	1.55	CLEATS	- as
Р	4,040	157	2.92	25.2	STEM	SIT .
K	2,580	100	28.60	2.26	sauni Di	, sai
Fe	1,820	70.8	< 0.05	10.1	ANUS F	4
Zn	1,000	38.9	0.04	4.32	8758H	26
Al	450	17.5	< 0.05	4.44		-
Си	93.6	3.64	0.16	0.23		
Cr	83.2	3.24	< 0.01	0.32		Ashes
Ni	57.2	2.22	0.20	0.21	F	M4

Treatment of Micro-Pollutants

Experimental Approach

- Spiked trace contaminants during a run
- Used high concentrations of Triclosan, Acetaminophen, and Ibuprofen
- Run with spiked IPA first, then spiked dog feces and IPA

<u>Results</u>

- Ibuprofen and acetaminophen (10 mg/L each) not analyzed yet
- Triclosan:

Relevant concentration: $0.5 - 1 \mu g/L$ Concentration spiked: $100 \mu g/L$ Concentration in effluent (IPA treatment): ND at < $0.1 \mu g/L$ Concentration in effluent (dog feces + IPA treatment): < $0.1 \mu g/L$ Removal > 99.99%

Energy Balances – 1000 users/day

- Compressor = biggest draw
- Losses + final cooling → not autothermal
 Optimized design:
- Turn of furnace (autothermal)
- Recover energy from gas expansion (3-6 kW)
- Expected draw = 6-10 kW (this is 6-10 W/p)
- Produce 5-10 kW has heat

Current and future activities

- Modify current prototype for greater energy efficiency
- New slurry pump to allow operation with high solids content and larger particles
- Techno-economic analysis, sensitivity of CAPEX and OPEX to size
- Design of an optimized and manufacturable product

Conclusions

- SCWO can turn fecal waste into clean water and heat really fast without odor, SOx, or NOx emissions...
- All pathogens are killed
- SCWO can even co-treat hazardous wastes
- Selling "high value added" by products can be a driver
- But many challenges remain...

Acknowledgments Gates Foundation for funding

marc.deshusses@duke.edu http://sanitation.pratt.duke.edu/

