

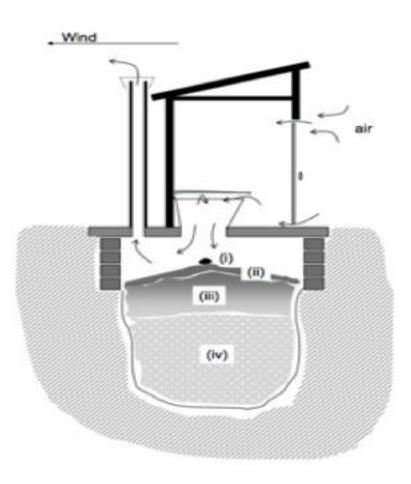
Linking Microbial Communities to Degradation Processes Occurring in a VIP and Pour-Flush Latrines

Francis L. de los Reyes III

Ling Wang¹, Aoife Byrne², Konstantina Velkushanova², and Chris Buckley²

¹Department of Civil, Construction, and Environmental Engineering, North Carolina State University ²Pollution Research Group, University of KwaZulu-Natal, Durban, South Africa

Department of Civil, Construction, Environmenta ENGINEERIN



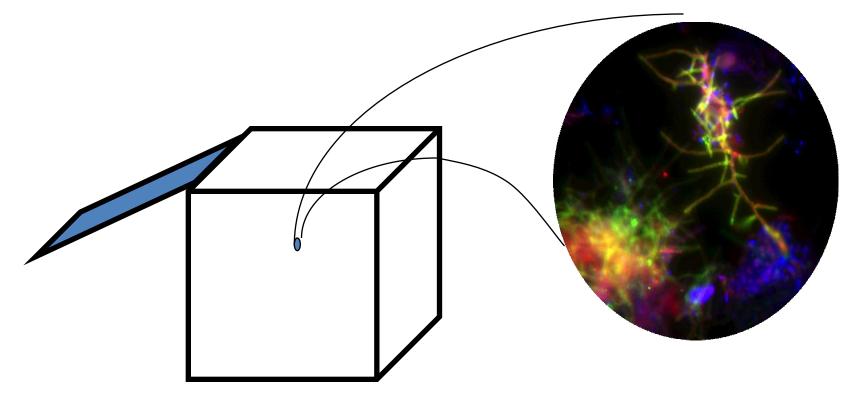
Ventilated Improved Pit Latrine (VIP)

What is going on inside the pit?

Biodegradation in pits Buckley model, 2008

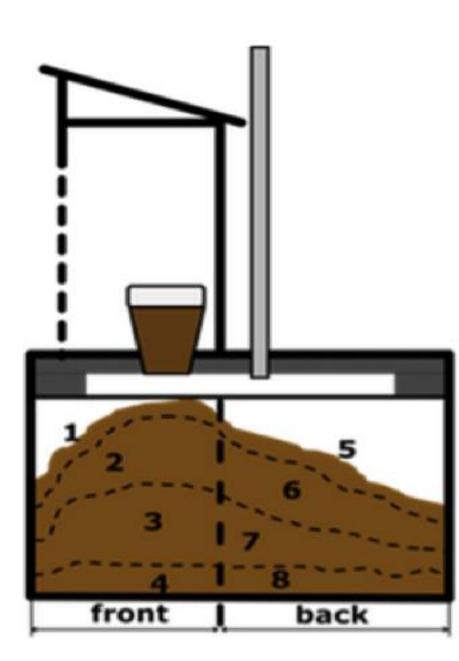
- Rapid aerobic degradation of the readily biodegradable portion of freshly deposited faeces
- Slow aerobic degradation of the biodegradable material remaining on the surface
- iii) Anaerobic degradation to methane and CO₂
- iv) Negligible degradation of the bottom layer, the material accumulating here is considered biologically stabilised.

Pour flush toilet



Still and Louton, 2012

Microbial Populations \rightarrow Inside the environmental "Black Box"


Who's there? What are they doing (causative)? Can we influence them?

Sampling a VIP

A pit in Bester's Camp, eThekwini municipality

8 representative FS samples from 4 different depth layers from the front and back of the pit

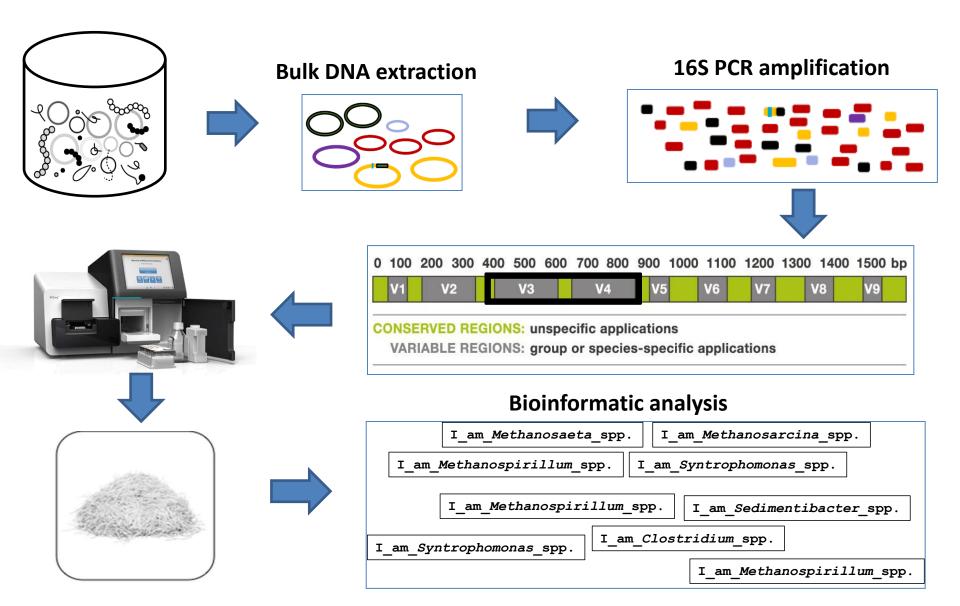
Sample	Layer	Type_ID
VIP1	Тор	VIP_front
VIP2	Second	VIP_front
VIP3	Third	VIP_front
VIP4	Forth	VIP_front
VIP5	Тор	VIP_back
VIP6	Second	VIP_back
VIP7	Third	VIP_back
VIP8	Forth	VIP_back

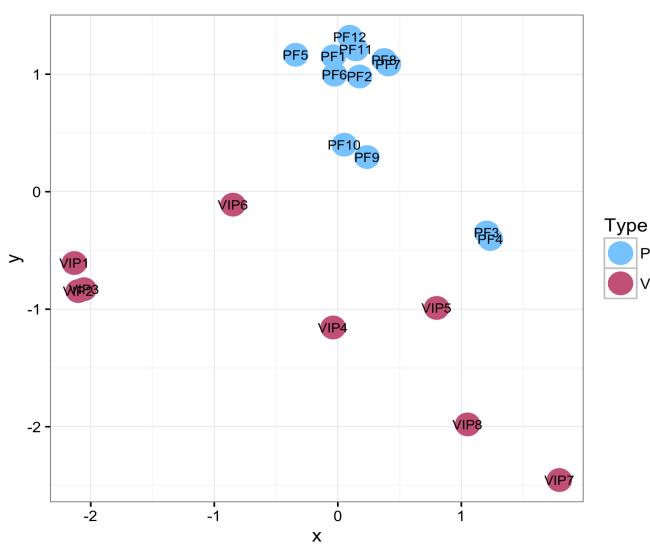
Pour-flush toilet (PF) sampling

Four Sites: 1, 2, 3, 4 Sites 1 and 2 have two pits on site Sites 3 and 4 have a single pit on site

- a: active pit
- b: standing pit
- s: single pit

Freshness: front>back

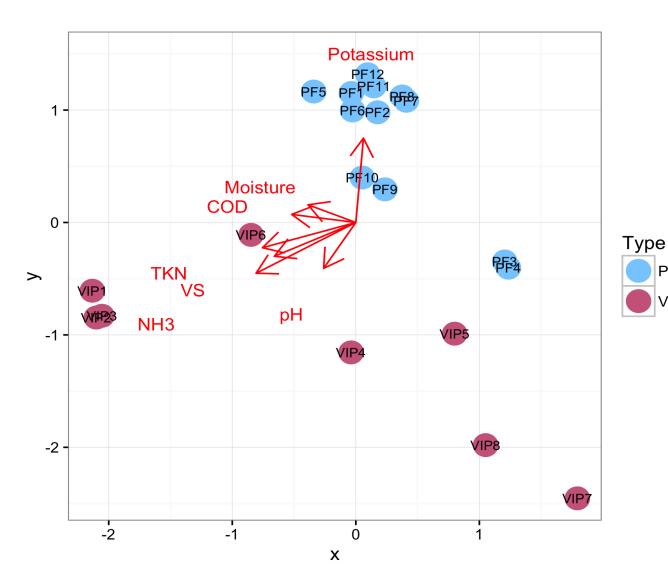

Sample	Site	Type_ID
PF1	1	PF_active_front
PF2	1	PF_active_back
PF3	1	PF_standing_front
PF4	1	PF_standing_back
PF5	2	PF_active_front
PF6	2	PF_active_back
PF7	2	PF_standing_front
PF8	2	PF_standing_back
PF9	3	PF_single_front
PF10	3	PF_single_back
PF11	4	PF_single_front
PF12	4	PF_single_back



Metagenomic analysis

Community profiling of environmental samples through amplicon sequencing

Microbial community distribution VIP very different from PF communities

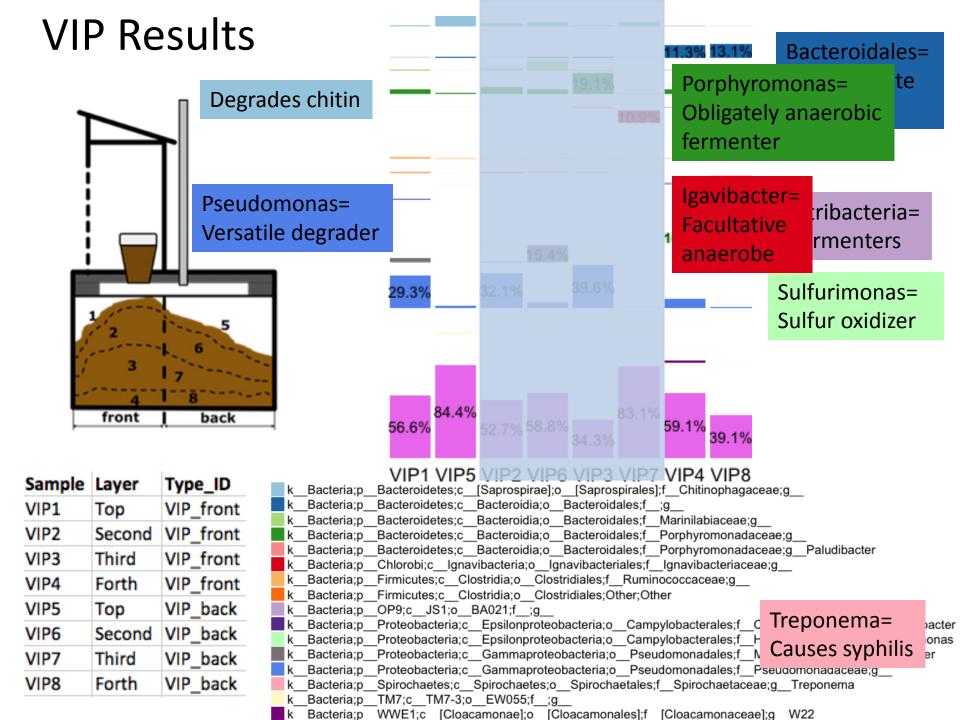

Sample	Layer	Type_ID
VIP1	Тор	VIP_front
VIP2	Second	VIP_front
VIP3	Third	VIP_front
VIP4	Forth	VIP_front
VIP5	Тор	VIP_back
VIP6	Second	VIP_back
VIP7	Third	VIP_back
VIP8	Forth	VIP_back

PF

VIP

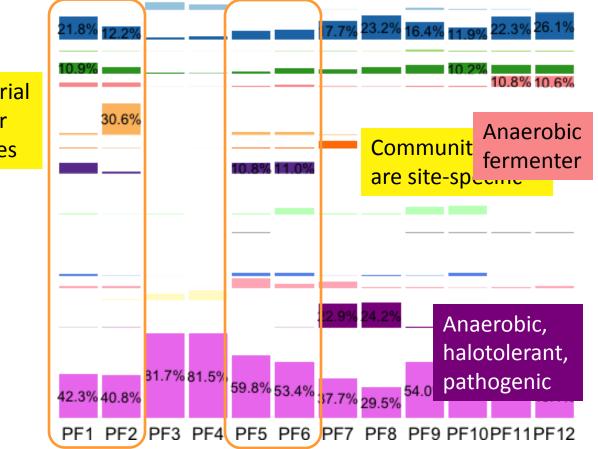
Sample	Site	Type_ID
PF1	1	PF_active_front
PF2	1	PF_active_back
PF3	1	PF_standing_front
PF4	1	PF_standing_back
PF5	2	PF_active_front
PF6	2	PF_active_back
PF7	2	PF_standing_front
PF8	2	PF_standing_back
PF9	3	PF_single_front
PF10	3	PF_single_back
PF11	4	PF_single_front
PF12	4	PF_single_back

Linking microbial community to conditions

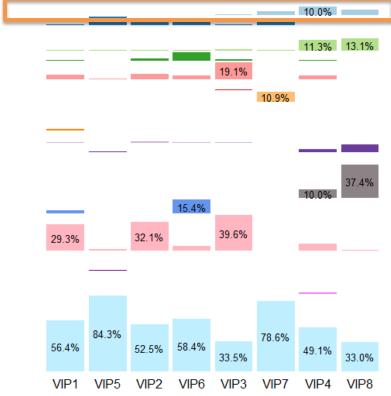


Sample	Layer	Type_ID
VIP1	Тор	VIP_front
VIP2	Second	VIP_front
VIP3	Third	VIP_front
VIP4	Forth	VIP_front
VIP5	Тор	VIP_back
VIP6	Second	VIP_back
VIP7	Third	VIP_back
VIP8	Forth	VIP_back

PF


VIP

Sample	Site	Type_ID
PF1	1	PF_active_front
PF2	1	PF_active_back
PF3	1	PF_standing_front
PF4	1	PF_standing_back
PF5	2	PF_active_front
PF6	2	PF_active_back
PF7	2	PF_standing_front
PF8	2	PF_standing_back
PF9	3	PF_single_front
PF10	3	PF_single_back
PF11	4	PF_single_front
PF12	4	PF_single_back


Pour-flush toilet (PF)

			Fresh materia
Sample	Site	Type_ID	have similar
PF1	1	PF_active	communities
PF2	1	PF_active	-
PF3	1	PF_stand	ing_front
PF4	1	PF_stand	ing_back
PF5	2	PF_active_front	
PF6	2	PF_active_back	
PF7	2	PF_standing_front	
PF8	2	PF_stand	ing_back
PF9	3	PF_single	e_front
PF10	3	PF_single	e_back
PF11	4	PF_single	e_front
PF12	4	PF_single	e_back

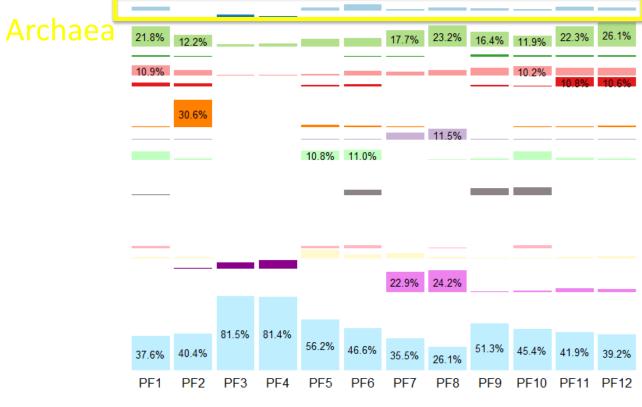
- k_Bacteria;p_Bacteroidetes;c_[Saprospirae];o_[Saprospirales];f_Chitinophagaceae;g_
- k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_
- k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Marinilabiaceae;g_
- k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_
- k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Paludibacter
- k_Bacteria;p_Chlorobi;c_Ignavibacteria;o_Ignavibacteriales;f_Ignavibacteriaceae;g_
- k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_
- k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;Other;Other
- ___k__Bacteria;p__OP9;c__JS1;o__BA021;f__;g_
- k_Bacteria;p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Campylobacteraceae;g_Arcobacter
- k_Bacteria;p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Helicobacteraceae;g_Sulfurimonas
- k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Moraxellaceae;g_Acinetobacter
- k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_
- k_Bacteria;p_Spirochaetes;c_Spirochaetes;o_Spirochaetales;f_Spirochaetaceae;g_Treponema
- k__Bacteria;p__TM7;c__TM7-3;o__EW055;f__;g__
- k_Bacteria;p_WWE1;c_[Cloacamonae];o_[Cloacamonales];f_[Cloacamonaceae];g_W22

Archaea in VIP

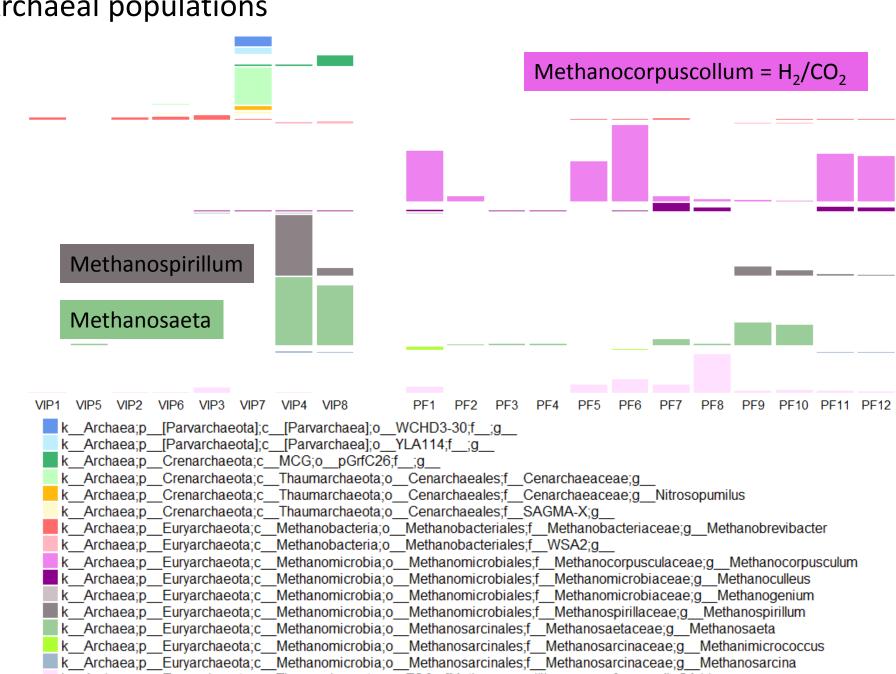
Archaea

 front
 back
 33.976

 VIP1
 VIP5
 VIP2
 VIP6
 VIP3
 VIP7
 VIP4
 VIP8


 k_Archaea
 k_Bacteria;p_Bacteroidetes;c_[Saprospirae];o_[Saprospirales];f_Chitinophagaceae;g_
 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_
 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Marinilabiaceae;g_

 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_
 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_


k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_ k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Marinilabiaceae;g_ k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_ k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_ k_Bacteria;p_Chlorobi;c_Ignavibacteria;o_Ignavibacteriales;f_Ignavibacteriaceae;g_ k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_ k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;Other;Other k_Bacteria;p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Campylobacteraceae;g_Arcobacter k_Bacteria;p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Helicobacteraceae;g_Sulfurimonas k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Moraxellaceae;g_Acinetobacter k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_ k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Spirochaetales;f_Pseudomonadaceae;g_ k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_ k_Bacteria;p_Moraxellaceae;c_Spirochaetes;o_Spirochaetales;f_Spirochaetaceae;g_Treponema k_Bacteria;p_TM7;c_TM7-3;o_EW055;f_;g_ k_Bacteria;p_WWE1;c_[Cloacamonae];o_[Cloacamonales];f_[Cloacamonaceae];g_W22

Taxa <8%

Pour-flush toilet (PF)

PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12
k Archaea
k_Bacteria;p_Bacteroidetes;c_[Saprospirae];o_[Saprospirales];f_Chitinophagaceae;g_
k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_
k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Marinilabiaceae;g_
k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_
k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Paludibacter
k_Bacteria;p_Chlorobi;c_Ignavibacteria;o_Ignavibacteriales;f_Ignavibacteriaceae;g_
k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_
k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;Other;Other
k_Bacteria;p_OP9;c_JS1;o_BA021;f_;g_
k_Bacteria;p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Campylobacteraceae;g_Arcobacter
k_Bacteria;p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Helicobacteraceae;g_Sulfurimonas
k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Moraxellaceae;g_Acinetobacter
k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_
k_Bacteria;p_Spirochaetes;c_Spirochaetes;o_Spirochaetales;f_Spirochaetaceae;g_Treponema
k_Bacteria;p_TM7;c_TM7-3;o_EW055;f_;g_
k_Bacteria;p_WWE1;c_[Cloacamonae];o_[Cloacamonales];f_[Cloacamonaceae];g_W22
Taxa <8%

Eurvarchaeota; c Thermoplasmata; o E2;f [Methanomassiliicoccaceae];g vadinCA11 k Archaea:p

Archaeal populations

Findings

- Unique insights using Illumina sequencing- first study on PF
- Microbial community differences between VIP and PF latrines
- Primary driver in difference are salts (potassium)
- More anaerobic organisms at bottom layers of VIP, consistent with model
- A variety of degradation processes can be identified:
 - carbohydrate, protein, fermentation, methanogenesis, sulfide oxidation
- More aceticlastic methanogenesis in VIPs, so pathway is through acetate
- Methanogenesis in PF is through hydrogen